Application of the Scully model to determine the vortex core parameters in the Francis hydro turbine
Suslov D. A. 1,2, Skripkin S. G. 1,2, Shtork S. I. 1,2
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
Email: d.suslov@g.nsu.ru, skryp91@mail.ru, sergei_stork@mail.ru

PDF
This study investigated spatial characteristics of the precessing vortex core (PVC) by using the Scully vortex model; the focus was made on the effects of additional jet injection through streamlined bodies in the center of the runner within the Francis hydraulic turbine model. The study was conducted under the partial-load conditions when intense precessing vortices developed and contributed to high-amplitude flow pulsations. The findings demonstrate that injection configurations leading to significant PVC suppression are associated with an increase in both the vortex radius and its precession radius. The results provide valuable insights for enhancing the range of stable and safe operation of hydraulic turbines. Keywords: Scully vortex model, precessing vortex core (PVC), Francis turbine.
  1. P.A. Kuibin, S.G. Skripkin, M.A. Tsoi, S.I. Shtork, Tech. Phys. Lett., 44, 1222 (2018). DOI: 10.1134/S1063785019010115
  2. A. Favrel, J. Gomes Pereira Junior, C. Landry, A. Muller, C. Nicolet, F. Avellan, J. Hydraul. Res., 56 (3), 367 (2018). DOI: 10.1080/00221686.2017.1356758
  3. S.I. Shtork, D.A. Suslov, S.G. Skripkin, I.V. Litvinov, E.U. Gorelikov, Energies, 16 (13), 5131 (2023). DOI: 10.3390/en16135131
  4. S. Pasche, F. Avellan, F. Gallaire, J. Fluids Eng., 139 (5), 051102 (2017). DOI: 10.1115/1.4035640
  5. J.S. Muller, F. Luckoff, T.L. Kaiser, K. Oberleithner, IOP Conf. Ser.: Earth Environ. Sci., 1079, 012053 (2022). DOI: 10.1088/1755-1315/1079/1/012053
  6. S.G. Skripkin, D.A. Suslov, I.V. Litvinov, E.U. Gorelikov, M.A. Tsoy, S.I. Shtork, J. Phys.: Conf. Ser., 2150, 012001 (2022). DOI: 10.1088/1742-6596/2150/1/012001
  7. I.V. Litvinov, D.A. Suslov, M.A. Tsoy, E.U. Gorelikov, S.I. Shtork, S.V. Alekseenko, K. Oberleithner, Int. J. Fluid Mach. Syst., 16 (4), 320 (2023). DOI: 10.5293/IJFMS.2023.16.3.320
  8. D.A. Suslov, S.G. Skripkin, M.A. Tsoy, E.Yu. Gorelikov, S.I. Shtork, Thermophys. Aeromech., 31 (4), 819 (2024). DOI: 10.1134/S0869864324040206
  9. A.V. Bilsky, O.A. Gobyzov, D.M. Markovich, Thermophys. Aeromech., 27 (1), 1 (2020). DOI: 10.1134/S0869864320010011
  10. M.A. Yadrenkin, Y.V. Gromyko, V.P. Fomichev, I.A. Fomichev, Tech. Phys. Lett., 50 (7), 55 (2024). DOI: 10.61011/TPL.2024.07.58729.19837
  11. S.V. Alekseenko, P.A. Kuibin, V.L. Okulov, Theory of concentrated vortices. An introduction (Springer, Berlin-Heidelberg, 2007), p. 137--149. DOI: 10.1007/978-3-540-73376-8
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru