Soldatenkova M.D.1,2, Lomakin A.I.2, Svyatodukh S.S.1,2,3, Titova N.A.2, Baeva E.M.1,2, Kolbatova A.I.2, Goltsman G.N.1,2,4,3
1National Research University Higher School of Economics, Moscow, Russia
2Moscow Pedagogical State University, Moscow, Russia
3 LLC «Superconducting nanotechnology»,Moscow, Russia
4Russian Quantum Center, Moscow, Russia
Email: msoldatenkova@hse.ru
New applications of superconducting single-photon detectors increase the requirement for large active area detectors. In this study we designed and fabricated a 12-pixel NbN detector with a large active area and a stripe width of 500 nm and an active area size of 45x50 μm, which is suitable for matching with multimode optical fiber. We investigated the current-voltage characteristics and determined the critical current Ic of the sample. This value was compared with the maximum possible theoretical value of the depairing current Idep. Due to the design of the multi-element NbN detector, which eliminates the influence of the current bunching effect, most of the studied samples demonstrate Ic/Idep value exceeding 0.7. Our results indicate that most of the pixels on the studied multi-element detector are capable of single photon detection. Keywords: superconducting single-photon detectors, superconductivity, critical current of a superconductor, shunt resistor, volt-ampere characteristics.
- G.N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski. Appl. Phys. Lett., 79 (6), 705 (2001). DOI: 10.1063/1.1388868
- G. Goltsman, A. Korneev, A. Divochiy, O. Minaeva, M. Tarkhov, N. Kaurova, V. Seleznev, B. Voronov, O. Okunev, A. Antipov, K. Smirnov, Yu. Vachtomin, I. Milostnaya, G. Chulkova. J. Modern Optics, 56 (15), 1670 (2009). DOI: 10.1080/09500340903277750
- B.A. Korzh, Q.-Y. Zhao, S. Frasca, J.P. Allmaras, T.M. Autry, E.A. Bersin, M. Colangelo, G.M. Crouch, A.E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J.D. Rezac, M.J. Stevens, E.E. Wollman, D. Zhu, P.D. Hale, K.L. Silverman, R.P. Mirin, S.W. Nam, M.D. Shaw, K.K. Berggren. Nat. Photonics, 14, 250 (2020). DOI: 10.1038/s41566-020-0589-x
- I.E. Zadeh, J.W.N. Los, R.B.M. Gourgues, J. Chang, A.W. Elshaari, J.R. Zichi, Y.J. van Staaden, J.P.E. Swens, N. Kalhor, A. Guardiani, Y. Meng, K. Zou, S. Dobrovolskiy, A.W. Fognini, D.R. Schaart, D. Dalacu, P.J. Poole, M.E. Reimer, X. Hu, S.F. Pereira, V. Zwiller, S.N. Dorenbos. ACS Photonics, 7, 1780 (2020). DOI: 10.1021/acsphotonics.0c00433
- J. Chiles, I. Charaev, R. Lasenby, M. Baryakhtar, J. Huang, A. Roshko, G. Burton, M. Colangelo, K. Van Tilburg, A. Arvanitaki, S.W. Nam, K.K. Berggren. Phys. Rev. Lett., 128 (23), 231802 (2022). DOI: https://doi.org/10.1103/PhysRevLett.128.231802
- S. Wang, Z.Q. Yin, D.Y. He, W. Chen, R.Q. Wang, P. Ye, Y. Zhou, G.J. Fan-Yuan, F.X. Wang, W. Chen, Y.G. Zhu, P.V. Morozov, A.V. Divochiy, Z. Zhou, G.C. Guo, Z.F. Han. Nature Photonics, 16 (2), 154 (2022). DOI: 10.1038/s41566-021-00928-2
- Y. Hochberg, I. Charaev, S.W. Nam, V. Verma, M. Colangelo, K.K. Berggren. Phys. Rev. Lett., 123 (15), 151802 (2019). DOI: https://doi.org/10.1103/PhysRevLett.123.151802
- F. Xia, M. Gevers, A. Fognini, A.T. Mok, B. Li, N. Akbari, I.E. Zadeh, J.Q. Dregely, C. Xu. ACS Photonics, 8 (9), 2800 (2021). DOI: https://doi.org/10.1364/CLEO_AT.2021.AM3C.6
- Y. Guan, H. Li, L. Xue, R. Yin, L. Zhang, H. Wang, G. Zhu, L. Kang, J. Chen, P. Wu. Opt. Laser Eng., 156, 107102 (2022). DOI: https://doi.org/10.1016/j.optlaseng.2022.107102
- E.E. Wollman, J.P. Allmaras, A.D. Beyer, B. Korzh, M.C. Runyan, L. Narvaez, W.H. Farr, F. Marsili, R.M. Briggs, G.J. Miles, M.D. Shaw. Opt. Express, 32 (27), 48185 (2024). DOI: https://doi.org/10.1364/OE.541425
- S. Steinhauer, S. Gyger, V. Zwiller. Appl. Phys. Lett., 118 (10), 100501 (2021). DOI: https://doi.org/10.1063/5.0044057
- J. Huang, W. Zhang, L. You, C. Zhang, C. Lv, Y. Wang, X. Liu, H. Li, Z. Wang. Supercond. Sci. Technol., 31 (7), 074001 (2018). DOI: 10.1088/1361-6668/aac180
- I. Craiciu, B. Korzh, A.D. Beyer, A. Mueller, J.P. Allmaras, L. Narvaez, M. Spiropulu, B. Bumble, T. Lehner, E.E. Wollman, M.D. Shaw. Optica, 10 (2), 183 (2023). DOI: https://doi.org/10.48550/arXiv.2210.11644
- W. Zhang, J. Huang, W. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, X. Xie. IEEE Transactions Appl. Superconductivity, 29 (5), 1 (2019). DOI: 10.1109/TASC.2019.2895621
- L. Stasi, T. Taher, G.V. Resta, H. Zbinden, R. Thew, F. Bussi\`eres. arXiv preprint arXiv:2406.15312 (2024)
- G.V. Resta, L. Stasi, M. Perrenoud, S. El-Khoury, T. Brydges, R. Thew, H. Zbinden, F. Bussi\`eres. Nano Lett., 23 (13), 6018 (2023). DOI: https://doi.org/10.1021/acs.nanolett.3c01228
- F. Grunenfelder, A. Boaron, M. Perrenoud, G.V. Resta, D. Rusca, C. Barreiro, R. Houlmann, R. Sax, L. Stasi, S. El-Khoury, E. Hanggi, N. Bosshard, F. Bussieres, H. Zbinden. Nature Photonics, 17, 422 (2023). DOI: https://doi.org/10.1038/s41566-023-01168-2
- C. Pena, C. Wang, S. Xie, A. Bornheim, M. Barri a, C.S. Marti n, V. Vega, A. Apresyan, E. Knehr, B. Korzh, L. Narvaez, S. Patel, M. Shaw, M. Spiropulu. arXiv preprint arXiv:2410.00251 (2024)
- M. Perrenoud, M. Caloz, E. Amri, C. Autebert, C. Schunenberger, H. Zbinden, F. Bussi\`eres. Supercond. Sci. Technol., 34 (2), 024002 (2021)
- D.Yu. Vodolazov. Phys. Rev. Appl., 7, 034014 (2017). DOI: https://doi.org/10.1103/PhysRevApplied.7.034014
- Y. Korneeva, D.Yu. Vodolazov, A.V. Semenov, I. Florya, N. Simonov, E. Baeva, A.A. Korneev, G.N. Goltsman, T.M. Klapwijk. Phys. Rev. Appl., 9 (6), 064037 (2018). DOI: https://doi.org/10.1103/PhysRevApplied.9.064037
- G.Z. Xu, W.J. Zhang, L.X. You, Y.Z. Wang, J.M. Xiong, D.H. Fan, L. Wu, H.Q. Yu, H. Li, Z. Wang. Opt. Express, 31 (10), 16348 (2023). DOI: 10.1364/OE.487024
- J.S. Luskin, E. Schmidt, B. Korzh, A.D. Beyer, B. Bumble, J.P. Allmaras, A.B. Walter, E.E. Wollman, L. Narvaez, V.B. Verma, S.W. Nam, I. Charaev, M. Colangelo, K.K. Berggren, C. Pena, M. Spiropulu, M.G. Sciveres, S. Derenzo, M.D. Shaw. Appl. Phys. Lett., 122 (24), 243506 (2024). DOI: https://doi.org/10.1063/5.0150282
- A.J. Kerman, J.K.W. Yang, R.J. Molnar, E.A. Dauler, K.K. Berggren. Phys. Rev. B-Condensed Matter Mater. Phys., 79 (10), 100509 (2009). DOI: https://doi.org/10.1103/PhysRevB.79.100509
- M.W. Brenner, D. Roy, N. Shah, A. Bezryadin. Phys. Rev. B-Condensed Matter Mater. Phys., 85 (22), 224507 (2012). DOI: https://doi.org/10.1103/PhysRevB.85.224507
- H.L. Hortensius, E.F.C. Driessen, T.M. Klapwijk, K.K. Berggren, J.R. Clem. Appl. Phys. Lett., 100 (18), 182602 (2012). DOI: https://doi.org/10.1063/1.4711217
- Yu.P. Korneeva, N.N. Manova, M.A. Dryazgov, N.O. Simonov, Ph.I. Zolotov, A.A. Korneev. Supercond. Sci. Technol., 34 (8), 084001 (2021). DOI: 10.1088/1361-6668/ac0950
- J.R. Clem, V.G. Kogan. Phys. Rev. B, 86, 174521 (2012). DOI: 10.1103/PhysRevB.86.174521
- A. Semenov, B. Gunther, U. Bottger, H. Hubers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, N. Gippius. Phys. Rev. B, 80, 054510 (2009). DOI: https://doi.org/10.1103/PhysRevB.80.054510
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.