Large area multi-element single-photon detector
Soldatenkova M.D.1,2, Lomakin A.I.2, Svyatodukh S.S.1,2,3, Titova N.A.2, Baeva E.M.1,2, Kolbatova A.I.2, Goltsman G.N.1,2,4,3
1National Research University Higher School of Economics, Moscow, Russia
2Moscow Pedagogical State University, Moscow, Russia
3 LLC «Superconducting nanotechnology»,Moscow, Russia
4Russian Quantum Center, Moscow, Russia
Email: msoldatenkova@hse.ru

PDF
New applications of superconducting single-photon detectors increase the requirement for large active area detectors. In this study we designed and fabricated a 12-pixel NbN detector with a large active area and a stripe width of 500 nm and an active area size of 45x50 μm, which is suitable for matching with multimode optical fiber. We investigated the current-voltage characteristics and determined the critical current Ic of the sample. This value was compared with the maximum possible theoretical value of the depairing current Idep. Due to the design of the multi-element NbN detector, which eliminates the influence of the current bunching effect, most of the studied samples demonstrate Ic/Idep value exceeding 0.7. Our results indicate that most of the pixels on the studied multi-element detector are capable of single photon detection. Keywords: superconducting single-photon detectors, superconductivity, critical current of a superconductor, shunt resistor, volt-ampere characteristics.
  1. G.N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski. Appl. Phys. Lett., 79 (6), 705 (2001). DOI: 10.1063/1.1388868
  2. G. Goltsman, A. Korneev, A. Divochiy, O. Minaeva, M. Tarkhov, N. Kaurova, V. Seleznev, B. Voronov, O. Okunev, A. Antipov, K. Smirnov, Yu. Vachtomin, I. Milostnaya, G. Chulkova. J. Modern Optics, 56 (15), 1670 (2009). DOI: 10.1080/09500340903277750
  3. B.A. Korzh, Q.-Y. Zhao, S. Frasca, J.P. Allmaras, T.M. Autry, E.A. Bersin, M. Colangelo, G.M. Crouch, A.E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J.D. Rezac, M.J. Stevens, E.E. Wollman, D. Zhu, P.D. Hale, K.L. Silverman, R.P. Mirin, S.W. Nam, M.D. Shaw, K.K. Berggren. Nat. Photonics, 14, 250 (2020). DOI: 10.1038/s41566-020-0589-x
  4. I.E. Zadeh, J.W.N. Los, R.B.M. Gourgues, J. Chang, A.W. Elshaari, J.R. Zichi, Y.J. van Staaden, J.P.E. Swens, N. Kalhor, A. Guardiani, Y. Meng, K. Zou, S. Dobrovolskiy, A.W. Fognini, D.R. Schaart, D. Dalacu, P.J. Poole, M.E. Reimer, X. Hu, S.F. Pereira, V. Zwiller, S.N. Dorenbos. ACS Photonics, 7, 1780 (2020). DOI: 10.1021/acsphotonics.0c00433
  5. J. Chiles, I. Charaev, R. Lasenby, M. Baryakhtar, J. Huang, A. Roshko, G. Burton, M. Colangelo, K. Van Tilburg, A. Arvanitaki, S.W. Nam, K.K. Berggren. Phys. Rev. Lett., 128 (23), 231802 (2022). DOI: https://doi.org/10.1103/PhysRevLett.128.231802
  6. S. Wang, Z.Q. Yin, D.Y. He, W. Chen, R.Q. Wang, P. Ye, Y. Zhou, G.J. Fan-Yuan, F.X. Wang, W. Chen, Y.G. Zhu, P.V. Morozov, A.V. Divochiy, Z. Zhou, G.C. Guo, Z.F. Han. Nature Photonics, 16 (2), 154 (2022). DOI: 10.1038/s41566-021-00928-2
  7. Y. Hochberg, I. Charaev, S.W. Nam, V. Verma, M. Colangelo, K.K. Berggren. Phys. Rev. Lett., 123 (15), 151802 (2019). DOI: https://doi.org/10.1103/PhysRevLett.123.151802
  8. F. Xia, M. Gevers, A. Fognini, A.T. Mok, B. Li, N. Akbari, I.E. Zadeh, J.Q. Dregely, C. Xu. ACS Photonics, 8 (9), 2800 (2021). DOI: https://doi.org/10.1364/CLEO_AT.2021.AM3C.6
  9. Y. Guan, H. Li, L. Xue, R. Yin, L. Zhang, H. Wang, G. Zhu, L. Kang, J. Chen, P. Wu. Opt. Laser Eng., 156, 107102 (2022). DOI: https://doi.org/10.1016/j.optlaseng.2022.107102
  10. E.E. Wollman, J.P. Allmaras, A.D. Beyer, B. Korzh, M.C. Runyan, L. Narvaez, W.H. Farr, F. Marsili, R.M. Briggs, G.J. Miles, M.D. Shaw. Opt. Express, 32 (27), 48185 (2024). DOI: https://doi.org/10.1364/OE.541425
  11. S. Steinhauer, S. Gyger, V. Zwiller. Appl. Phys. Lett., 118 (10), 100501 (2021). DOI: https://doi.org/10.1063/5.0044057
  12. J. Huang, W. Zhang, L. You, C. Zhang, C. Lv, Y. Wang, X. Liu, H. Li, Z. Wang. Supercond. Sci. Technol., 31 (7), 074001 (2018). DOI: 10.1088/1361-6668/aac180
  13. I. Craiciu, B. Korzh, A.D. Beyer, A. Mueller, J.P. Allmaras, L. Narvaez, M. Spiropulu, B. Bumble, T. Lehner, E.E. Wollman, M.D. Shaw. Optica, 10 (2), 183 (2023). DOI: https://doi.org/10.48550/arXiv.2210.11644
  14. W. Zhang, J. Huang, W. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, X. Xie. IEEE Transactions Appl. Superconductivity, 29 (5), 1 (2019). DOI: 10.1109/TASC.2019.2895621
  15. L. Stasi, T. Taher, G.V. Resta, H. Zbinden, R. Thew, F. Bussi\`eres. arXiv preprint arXiv:2406.15312 (2024)
  16. G.V. Resta, L. Stasi, M. Perrenoud, S. El-Khoury, T. Brydges, R. Thew, H. Zbinden, F. Bussi\`eres. Nano Lett., 23 (13), 6018 (2023). DOI: https://doi.org/10.1021/acs.nanolett.3c01228
  17. F. Grunenfelder, A. Boaron, M. Perrenoud, G.V. Resta, D. Rusca, C. Barreiro, R. Houlmann, R. Sax, L. Stasi, S. El-Khoury, E. Hanggi, N. Bosshard, F. Bussieres, H. Zbinden. Nature Photonics, 17, 422 (2023). DOI: https://doi.org/10.1038/s41566-023-01168-2
  18. C. Pena, C. Wang, S. Xie, A. Bornheim, M. Barri a, C.S. Marti n, V. Vega, A. Apresyan, E. Knehr, B. Korzh, L. Narvaez, S. Patel, M. Shaw, M. Spiropulu. arXiv preprint arXiv:2410.00251 (2024)
  19. M. Perrenoud, M. Caloz, E. Amri, C. Autebert, C. Schunenberger, H. Zbinden, F. Bussi\`eres. Supercond. Sci. Technol., 34 (2), 024002 (2021)
  20. D.Yu. Vodolazov. Phys. Rev. Appl., 7, 034014 (2017). DOI: https://doi.org/10.1103/PhysRevApplied.7.034014
  21. Y. Korneeva, D.Yu. Vodolazov, A.V. Semenov, I. Florya, N. Simonov, E. Baeva, A.A. Korneev, G.N. Goltsman, T.M. Klapwijk. Phys. Rev. Appl., 9 (6), 064037 (2018). DOI: https://doi.org/10.1103/PhysRevApplied.9.064037
  22. G.Z. Xu, W.J. Zhang, L.X. You, Y.Z. Wang, J.M. Xiong, D.H. Fan, L. Wu, H.Q. Yu, H. Li, Z. Wang. Opt. Express, 31 (10), 16348 (2023). DOI: 10.1364/OE.487024
  23. J.S. Luskin, E. Schmidt, B. Korzh, A.D. Beyer, B. Bumble, J.P. Allmaras, A.B. Walter, E.E. Wollman, L. Narvaez, V.B. Verma, S.W. Nam, I. Charaev, M. Colangelo, K.K. Berggren, C. Pena, M. Spiropulu, M.G. Sciveres, S. Derenzo, M.D. Shaw. Appl. Phys. Lett., 122 (24), 243506 (2024). DOI: https://doi.org/10.1063/5.0150282
  24. A.J. Kerman, J.K.W. Yang, R.J. Molnar, E.A. Dauler, K.K. Berggren. Phys. Rev. B-Condensed Matter Mater. Phys., 79 (10), 100509 (2009). DOI: https://doi.org/10.1103/PhysRevB.79.100509
  25. M.W. Brenner, D. Roy, N. Shah, A. Bezryadin. Phys. Rev. B-Condensed Matter Mater. Phys., 85 (22), 224507 (2012). DOI: https://doi.org/10.1103/PhysRevB.85.224507
  26. H.L. Hortensius, E.F.C. Driessen, T.M. Klapwijk, K.K. Berggren, J.R. Clem. Appl. Phys. Lett., 100 (18), 182602 (2012). DOI: https://doi.org/10.1063/1.4711217
  27. Yu.P. Korneeva, N.N. Manova, M.A. Dryazgov, N.O. Simonov, Ph.I. Zolotov, A.A. Korneev. Supercond. Sci. Technol., 34 (8), 084001 (2021). DOI: 10.1088/1361-6668/ac0950
  28. J.R. Clem, V.G. Kogan. Phys. Rev. B, 86, 174521 (2012). DOI: 10.1103/PhysRevB.86.174521
  29. A. Semenov, B. Gunther, U. Bottger, H. Hubers, H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, R. Schneider, D. Gerthsen, N. Gippius. Phys. Rev. B, 80, 054510 (2009). DOI: https://doi.org/10.1103/PhysRevB.80.054510

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru