Influence of features of localization of hydrogen atoms in lithium niobate crystals on the form of oxygen-octahedral clusters of the structure
Sidorov N.V.1, Bobreva L.A. 1, Palatnikov M.N. 1
1Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Apatity, Murmansk region, Russia
Email: l.bobreva@ksc.ru

PDF
Based on the IR absorption spectra in the region of OH--group stretching vibrations, it was established that the oxygen-octahedral clusters MeO6 (Me - Li, Nb, vacant octahedron V, impurity ion) in the structure of the LiNbO3:Er(3.1 wt%) crystal and the nominally pure highly perfect LiNbO3 crystal of stoichiometric composition (R=[Li]/[Nb]=1) have a shape close to the shape of a regular octahedron and at the same time there are practically no deep electron traps - point defects NbLi, responsible for the crystal's resistance to optical damage. In the IR spectrum of these crystals, only one line is observed, corresponding to the stretching vibrations of hydrogen atoms linked by hydrogen bonds with oxygen atoms oscillating along the polar axis of the crystal in the Me-O-Me bridge (Me - Li, Nb, vacancy, impurity metal). This vibration changes the dipole moment of the unit cell of the crystal and is active in the IR absorption spectrum. The vibration frequency is determined by the crystal composition. The stretching vibrations of the remaining hydrogen atoms of the hydroxyl groups OH of the highly symmetric oxygen-octahedral clusters MeO6 of LiNbO3 crystals do not change the dipole moment of the unit cell and are not active in the IR absorption spectrum. In the structure of non-stoichiometric LiNbO3 crystals, there are two or more nonequivalent positions of OH-- groups and more than two lines in the frequency range 3450-3550 cm-1 are observed in their IR absorption spectrum. Keywords: lithium niobate single crystal, stoichiometry, erbium doping, point defects, OH-- groups, materials for active nonlinear laser media and laser radiation conversion, IR absorption spectra.
  1. L. Arizmendi. Phys. Stat. Sol. A, 201 (2), 253 (2004). DOI: 10.1002/pssa.200303911
  2. O. Sachez-Dena, S.D. Villalobos-Mendoza, R. Fari as, C.D. Fierro-Ruiz. Crystals, 10 (11), 990 (2020). DOI: 10.3390/cryst10110990
  3. P. Gunter, J.P. Huighard. Photorefractive Materials and Their Applications 2 (N.Y. Springer Series in Optical Sciences. LLC. 2007). 640 p. DOI: 10.1007/0-387-34081-5
  4. N.V. Sidorov, M.N. Palatnikov, N.A. Teplyakova, I.V. Biryukova, R.A. Titov, O.V. Makarova, S.M. Masloboeva. it Monokristally niobata i tantalata litiya raznogo sostava i genezisa (RAN, M., 2022), 288 s. (in Russian)
  5. N.V. Sidorov, O.Yu. Pikul', N.A. Teplyakova, M.N. Palatnikov. it Lazernaya konoskopiya i fotoinducirovannoe rasseyanie sveta v issledovaniyah svojstv nelinejno-opticheskogo kristalla niobata litiya (RAN, M., 2019), 350 s. (in Russian)
  6. A.A. Anikiev, N.V. Sidorov, M.N. Palatnikov, M.F. Umarov, E.N. Anikieva. Opt. Mat., 111, 110729 (2021). DOI: 10.1016/j.optmat.2020.110729
  7. N.V. Sidorov, N.A. Teplyakova, M.N. Palatnikov. Phys. Usp., 68 (3), (2025). DOI: 10.3367/UFNe.2024.11.039806
  8. T. Volk, M. Wohlecke. Lithium Niobate. Defects, Photorefraction and Ferroelectric (Switching, Springer, Berlin, 2008), 250 p
  9. L. Kovacs, Zs. Szaller, K. Lengyel, G. Corradi. Opt. Mat., 37, 55 (2014). DOI: 10.1016/j.optmat.2014.04.043
  10. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, E. Dieguez. Advances in Phys., 45 (5), 349 (1996). DOI: 10.1080/00018739600101517
  11. K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, K. Appl. Phys. Rev., 2, 040601 (2015). DOI: 10.1063/1.4929917
  12. V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J. Melkonian, A. Godard. Opt. Exp., 21 (23), 28886 (2013). DOI: 10.1364/OE.21.028886
  13. R.T. Murray, T.H. Runcorn, S. Guha, J.R. Taylor. Opt. Exp., 25 (6), 6421 (2017). DOI: 10.1364/OE.25.006421
  14. V.Ya. Shur, A.R. Akhmatkhanov, I.S. Baturin. Appl. Phys. Rev., 2, 040604-1 (2015). DOI: 10.1063/1.4928591
  15. Y. Ruan, X. Wang, T. Tsuboi. J. Alloys and Compd., 275, 246 (1998). DOI: 10.1016/S0925-8388(98)00313-2
  16. J.-C.G. Buzli, S.V. Eliseeva, SPR S FLUOR, 7, 1 (2010). DOI: 10.1007/4243_2010_3
  17. V.V. Galutskiy, K.V. Puzanovskiy, S.A. Shmargilov, E.V. Stroganova. J. Phys. Conf. Ser., 2103, 012183 (2021). DOI: 10.1088/1742-6596/2103/1/012183
  18. E.V. Stroganova, N.N. Nalbantov, V.V. Galutskiy, N.A. Yakovenko. Opt. Spectrosc., 121 (6), 922 (2016). DOI: 10.1134/S0030400X16120262
  19. N.N. Nalbantov, E.V. Stroganova, V.V. Galutskiy. J. Phys. Conf. Ser., 737, 012017 (2016). DOI: 10.1088/1742-6596/737/1/012017
  20. L.X. Lovisa, T.B.O. Nunes, E.C. Tavares, R.C.L. Machado, L.F. Dos Santos, M.R.D. Bomio, F.V. Motta. Appl. Phys. A, 130, 226 (2024). DOI: 10.1007/s00339-024-07399-6
  21. M.N. Palatnikov, N.V. Sidorov, I.V. Biryukova, O.B. Shcherbina, V.T. Kalinnikov. Per. mat., 2, 93 (2011). (in Russian)
  22. M.N. Palatnikov, N.V. Sidorov, O.V. Palatnikova, I.V. Biryukova. Defektnaya struktura kristallov niobata litiya odinarnogo i dvojnogo legirovaniya (RAN, M., 2024), 331 s. (in Russian)
  23. M.N. Palatnikov, I.V. Biryukova, O.B. Shcherbina, N.V. Sidorov, O.V. Makarova, N.A. Teplyakova. Kristallografiya, 61 (6), 999 (2016) (in Russian). DOI: 10.7868/S0023476116040160
  24. L.O. Svaasand, M. Erikrund, G. Nakken, A.P. Grand. J. Cryst. Growth., 22 (3), 230 (1974). DOI: 10.1016/0022-0248(74)90099-2
  25. S.C. Abrahams, J.M. Reddy, J.L. Bernstein. J. Phys. Chem. Sol., 27 (6/7), 997 (1966). DOI: 10.1016/0022-3697(66)90072-2
  26. Y. Shozaki, T. Mitsui. J. Phys. Chem. Solids., 24 (8), 1057 (1963). DOI: 10.1016/0022-3697(63)90012
  27. N.V. Sidorov, T.R. Volk, B.N. Mavrin, V.T. Kalinnikov. it Niobat litiya: defekty, fotorefrakciya, kolebatel'nyj spektr, polyaritony (Nauka, M., 2003), 250 s. (in Russian)
  28. H.J. Donnerberg, S.M. Tomlinson, C.R.A. Catlow, O.F. Schirmer. J. Phys. Chem. Solids., 52 (1), 201 (1991). DOI: 10.1103/physrevb.40.11909
  29. L. Kovacs, L. Rebouta, J.C. Soarest, M.F. da Silva, M. Hage-Ali, J.P. Stoquert, P. Siffert, J.A. Sanz-Garcia, G. Corradi, Z. Szaller, K. Polgar. J. Phys.: Condens. Matter., 5 (7), 781 (1993). DOI: 10.1088/0953-8984/5/7/006
  30. A. Kling. Materials, 16, 797 (2023). DOI: 10.3390/ma16020797

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru