Chuev A. A.1, Chistyakov V. A.1, Dudnikova A. A.1, Sayanskiy A. D.1, Sidorenko M. S.1, Rybin M.V.1,2
1School of Physics and Engineering, ITMO University, St Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: v.chistyakov@metalab.ifmo.ru
The development of optical antennas is a critical challenge in modern photonics. Contemporary technological capabilities for fabricating such elements impose several constraints, including planar modulation of dielectric permittivity. Additionally, it is desirable to use low-absorption materials with a low refractive index. This study presents the results of the design and investigation of dielectric nanoantennas based on low-contrast quasicrystalline structures, which enable the formation of a radiation pattern from a dipole source. The material distribution within the structure is determined using an inverse design method and computational optimization to achieve the maximum gain coefficient. Theoretical analysis of the optimized optical antenna properties demonstrates a radiation gain of up to 10 dBi when using materials with a refractive index of 1.48. Keywords: quasicrystalline photonic structure, inverse design method, optical antennas, high directivity, low-refractive-index materials.
- M.V. Rybin, M.F. Limonov, UFN, bf 189, 881 (2019). (in Russian)
- J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade. Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008), 2nd edn
- A.F. Koenderink. ACS Photonics, 4, 710 (2017)
- M.R. Hasan, O.G. Helles. Nanotechnology, 32, 202001 (2021)
- N. Li, Y. Lai, S.H. Lam, H. Bai, L. Shao, J. Wang. Advanced Optical Materials, 9, 2001081 (2021)
- A. Tittl, C. Kremers, J. Dorfmuller, D.N. Chigrin, H. Giessen. Optical Materials Express, 2, 111 (2012)
- F. Neubrech, C. Huck, K. Weber, A. Pucci, H. Giessen. Chemical Reviews, 117, 5110 (2017)
- B.J. Roxworthy, K.D. Ko, A. Kumar, K.H. Fung, E.K. Chow, G.L. Liu, N.X. Fang, K.C. Toussaint, Jr. Nano Letters, 12, 796 (2012)
- A. Alu, N. Engheta. Physical Review Letters, 104, 213902 (2010)
- P.R. Wiecha, A. Arbouet, C. Girard, O.L. Muskens. Photonics Research, 9, B182 (2021)
- R. Hernandez, P.R. Wiecha, J.M. Poumirol, G. Agez, A. Arbouet, L. Ressier, V. Paillard, A. Cuche. JOSA B, 41, A108 (2024)
- H. Wang, W. Jin, C. Guo, N. Zhao, S.P. Rodrigues, S. Fan. ACS Photonics, 9, 1358 (2022)
- L. Maiwald, T. Sommer, M.S. Sidorenko, R.R. Yafyasov, M.E. Mustafa, M. Schulz, M.V. Rybin, M. Eich, A.Y. Petrov. Advanced optical materials, 10, 2100785 (2022)
- V.A. Chistyakov, R.R. Yafyasov, A.D. Sayanskiy, M.S. Sidorenko, M.V. Rybin. Opt. Lett., 49, 3664 (2024)
- V.A. Chistyakov, M.S. Sidorenko, A.D. Sayanskiy, M.V. Rybin. JETP Letters, 117, 742 (2023)
- M.E. Mustafa, M. Eich, A.Y. Petrov. Opt. Mater. Express, 14, 1281 (2024)
- J.P. Dowling, M. Scalora, M.J. Bloemer, C.M. Bowden. J. Applied Physics, 75, 1896 (1994)
- K. Sakoda. Optical properties of photonic crystals, vol. 2, (Springer, 2005)
- A.E. Krasnok, A.P. Slobozhanyuk, C.R. Simovski, S.A. Tretyakov, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, P.A. Belov. Scientific Reports, 5, 12956 (2015)
- B.B. Nikol'skij. it Elektrodinamika i rasprostranenie radiovoln [Ucheb. posobie dlya radiotekhn. spec. vuzov], (Nauka, Moskva, 1989). (in Russian)
- P.I. Frazier. arXiv preprint arXiv:1807.02811 (2018)
- D.J. Wales, J.P. Doye. J. Physical Chemistry A, 101, 5111 (1997).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.