SQIF magnetometer for navigation systems: experimental and theoretical study of base cells
G. S. Khismatullin1,2, Kolotinskiy N. V. 3, Khrenov M.M.1,2,4, Ionin A. S.2, M.Y. Fominsky4, L.V. Filippenko4, I. I. Soloviev1,4, Klenov N. V. 3
1Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
2Russian Quantum Center, Moscow, Russia
3Moscow State University, Moscow, Russia
4Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: kolotinskiynv@my.msu.ru, khrenov.mm@gmail.com, nvklenov@mail.ru

PDF
The article is devoted to the development of a magnetometer to improve the accuracy of inertial navigation systems with superconducting gyroscopes. To minimize signal reading errors, a magnetometer design based on a chain of sequentially connected two-junction variable area interferometers (SQIF) is proposed, which solves the problem of dynamic range and "zero" determination by magnetic field. The experimental part of the work includes the design and fabrication of test samples of interferometers, measurement of their static and dynamic characteristics, including voltage-flux dependencies. Numerical and analytical approaches have been developed to analyze the characteristics of the manufactured structures in order to adequately interpret the data obtained and improve the technology. The obtained results confirm the promising nature of the selected approaches and the high potential of the proposed theoretical methods for the analysis of the peculiarities of macroscopic quantum interference. Keywords: Josephson effect, two-contact interferometer, SQIF, gyroscope.
  1. R. Brady. IEEE Trans. Magn., 17 (1), 861 (1981). DOI: 10.1109/tmag.1981.1061112
  2. I. Khomchenko, P. Navez, H. Ouerdane. Appl. Phys. Lett., 121 (15), (2022). DOI: 10.1063/5.0126680
  3. V.G. Peshekhonov. Gyroscopy and Navigation, 2 (3), 111 (2011). DOI: 10.1134/s2075108711030096
  4. C.W.F. Everitt. In Laser Inertial Rotation Sensors, ed. by S. Ezekiel, G.E. Knausenberger (SPIE, 0157, 1978), p. 175. DOI: 10.1117/12.965483
  5. W.J. Bencze, R.W. Brumley, M.L. Eglington, D.N. Hipkins, T.J. Holmes, B.W. Parkinson, Y. Ohshima, C.W.F. Everitt. Classical Quant. Grav., 32, 224005 (2015). DOI: 10.1088/0264-9381/32/22/224005
  6. A.V. Rzhevskiy, O.V. Snigirev, Yu.V. Maslennikov, V.Yu. Slobodchikov. Mosc. Univ. Phys. Bull., 75 (4), 336 (2020). DOI: 10.3103/s0027134920040104
  7. R. Stolz, M. Schmelz, V. Zakosarenko, C.P. Foley, K. Tanabe, X. Xie, R. Fagaly. Supercond. Sci. Technol., 34, 33001 (2021). DOI: 10.1088/1361-6668/abd7ce
  8. S.P. Smith. In Position, Navigation, and Timing Technologies in the 21st Century, ed. by Y.T.J. Morton, F. van Diggelen, J.J.S. Jr., B.W. Parkinson, S. Lo, G. Gao (Wiley, 2020), p. 1413. DOI: 10.1002/9781119458555.ch44
  9. T. Schonau, V. Zakosarenko, M. Schmelz, R. Stolz, S. Anders, S. Linzen, M. Meyer, H.-G. Meyer. Rev. Sci. Instrum., 86 (10), (2015). DOI: 10.1063/1.4933386
  10. V.K. Kornev, I.I. Soloviev, N.V. Klenov, O.A. Mukhanov. IEEE Trans. Appl. Supercond., 21 (3), 394 (2011). DOI: 10.1109/tasc.2010.2095451
  11. R.A. Yusupov, L.V. Filippenko, M.Yu. Fominskiy, V.P. Koshelets. Phys. Solid State, 64 (8), 467 (2022). DOI: 10.1134/s1063783422090086
  12. W.H. Henkels. Appl. Phys. Lett., 32 (12), 829 (1978). DOI: 10.1063/1.89940
  13. M.M. Khapaev, A.Yu. Kidiyarova-Shevchenko, P. Magnelind, M.Yu. Kupriyanov. IEEE Trans. Appil. Supercond., 11 (1), 1090 (2001). DOI: 10.1109/77.919537
  14. I.I. Soloviev, N.V. Klenov, A.E. Schegolev, S.V. Bakurskiy, M.Y. Kupriyanov. Supercond. Sci. Technol., 29 (9), 94005 (2016). DOI: 10.1088/0953-2048/29/9/094005
  15. M.A. Gali Labarias, K.H. Muller, E.E. Mitchell. Phys. Rev. Appl., 17 (6), 064009 (2022). DOI: 10.1088/1361-6668/aa7a52
  16. N.V. Kolotinskiy, V.K. Kornev. Phys. C, 618, 1354467 (2024). 7.69 DOI: 10.1103/PhysRevApplied.17.06400910.1016/j.physc.2024.1354467
  17. J. Oppenlander, P. Caputo, Ch. Haussler, T. Trauble, J. Tomes, A. Friesch, N. Schopohl. Appl. Phys. Lett., 83 (5), 969 (2003). DOI: 10.1063/1.1597753
  18. P. Caputo, J. Oppenlander, Ch. Haussler, J. Tomes, A. Friesch, T. Trauble, N. Schopohl. Appl. Phys. Lett., 85 (8), 1389 (2004). DOI: 10.1063/1.1787165
  19. A.V. Shadrin, K.Y. Constantinian, G.A. Ovsyannikov, S.V. Shitov, I.I. Soloviev, V.K. Kornev, J. Mygind. Appl. Phys. Lett., 93 (26), (2008). DOI: 10.1063/1.3058759
  20. M.I. Faley, Y. Liu, R.E. Dunin-Borkowski. Nanomaterials, 11 (2), 466 (2021). DOI: 10.3390/nano11020466
  21. A.G. Shishkin, O.V. Skryabina, V.L. Gurtovoi, S.E. Dizhur, M.I. Faley, A.A. Golubov, V.S. Stolyarov. Supercond. Sci. Technol., 33 (6), 65005 (2020). DOI: 10.1088/1361-6668/ab877c
  22. D.S. Yakovlev, I.A. Nazhestkin, N.G. Ismailov, S.V. Egorov, V.N. Antonov, V.L. Gurtovoi. Symmetry, 15 (2), 550 (2023). DOI: 10.3390/sym15020550
  23. I.A. Nazhestkin, S.V. Bakurskiy, A.A. Neilo, I.E. Tarasova, N.G. Ismailov, V.L. Gurtovoi, S.V. Egorov, S.A. Lisitsyn, V.S. Stolyarov, V.N. Antonov, V.V. Ryazanov, M.Y. Kupriyanov, I.I. Soloviev, N.V. Klenov, D.S. Yakovlev. Adv. Eng. Mater., 27 (5), (2025). DOI: 10.1002/adem.202402385
  24. C. Granata, A. Vettoliere. Phys. Rep., 614, 1 (2016). DOI: 10.1016/j.physrep.2015.12.001

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru