Вышедшие номера
Study of applicability of Boltzmann-statistics and two mobility models for organic semiconductors
Chen-Xin Zhou1, Jiu-Xun Sun1, Zhi-Jun Deng1, Shuai Zhou1
1Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, China
Поступила в редакцию: 19 октября 2012 г.
Выставление онлайн: 19 сентября 2013 г.

The organic semiconductors are treated as non-degenerate based on recent experiment on validity of classical Einstein relationship. The expression of density of holes is analytically derived by using the Boltzmann statistics. The mobility model of Pasveer et al. and the exponential model of Pai modified by Blom et al. are combined to solve drift-diffusion equations to extract information about the mobility and effective density of state. The results show that the mobility model of Pasveer et al. can not well fit the experimental J-V data for a rubrene single crystal from Krellner et al. both at low and high voltages, and some of the parameters extracted show inconsistent temperature dependence which should be constants in the theoretical framework of Pasveer et al. Whereas the exponential model gives satisfactory fit for experimental J-V data at all voltage ranges, and the extracted parameters show correct temperature dependence. The temperature dependence of parameters contained in the exponential model of mobility can be well fitted by using simple expressions proposed by Blom et al. And the temperature dependence of effective density of state derived from the non-degenerate Boltzmann statistics is verified. The distribution of potential, electric field and density of holes are calculated as analyzed.
  1. A.C. Arias, J.D. MacKenzie, I. McCulloch et al. Chem. Rev., 110, 3 (2010)
  2. M.L. Chabinyc, W.S. Wong, A.C. Arias et al. Proc. IEEE, 93, 1491 (2005)
  3. H.E. Katz, J. Huang, A. Annu. Rev. Mater. Res., 39, 71 (2009)
  4. T.W. Kelley, P.F. Baude, C. Gerlach et al. Chem. Mater., 16, 4413 (2004)
  5. H. Sirringhaus. Proc. IEEE, 97, 1570 (2009)
  6. H. Klauk. Organic Electronics (Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, FRG, 2006)
  7. W.S. Wong, and A. Salleo. Flexible Electronics: Materials and Applications (Springer, 2010)
  8. H.N. Tsao, D. Cho, J.W. Andreasen, et al. Adv. Mater., 21, 209 (2009)
  9. T.W. Kelley, L.D. Boardman, T.D. Dunbar, et al. J. Phys. Chem. B, 107, 5877 (2003)
  10. H. Minemawari, T. Yamada, H. Matsui, et al. Nature, 475, 364 (2011)
  11. H. Xie, H. Alves, A.F. Morpurgo. Phys. Rev. B 80, 245 305 (2009)
  12. A.R. Volkel, R.A. Street, D. Knipp. Phys. Rev. B, 66, 195 336 (2002)
  13. S. Verlaak, V. Arkhipov, P. Heremans. Appl. Phys. Lett., 82, 745 (2003)
  14. W.L. Kalb, S. Haas, C. Krellner et al. Phys. Rev. B, 81, 155 315 (2010)
  15. W.L. Kalb, F. Meier, K. Mattenberger et al. Phys. Rev. B, 76, 184 112 (2007)
  16. G. Horowitz, R. Hajlaoui, D. Fichou et al. J. Appl. Phys., 85, 3202 (1999)
  17. M.E. Gershenson, V. Podzorov, A.F. Morpurgo. Rev. Mod. Phys., 78, 973 (2006)
  18. M.F. Calhoun, C. Hsieh, V. Podzorov. Phys. Rev. Lett., 98, 096 402 (2007)
  19. V. Podzorov, E. Menard, J.A. Rogers et al. Phys. Rev. Lett., 95, 226 601 (2005)
  20. V. Podzorov, E. Menard, A. Borissov et al. Phys. Rev. Lett., 93, 086 602 (2004)
  21. K.P. Pernstich, B. Rossner, B. Batlogg. Nature Mater., 7, 321 (2008)
  22. F. Schauer, S. Nespurek, H. Valerian. J. Appl. Phys., 80, 880 (1996)
  23. C. Krellner, S. Haas, C. Goldmann et al., Phys.Rev. B, 75, 245 115 (2007)
  24. D.M. Pai. J. Chem, Phys., 52, 2285 (1970)
  25. W.F. Pasveer, J. Cottaar, C. Tanase, et al. Phys. Rev. Lett., 94, 206 601 (2005)
  26. D.H. Dunlap, P.E. Parris, V.M. Kenkre. Phys. Rev. Lett., 77, 542 (1996)
  27. P.W.M. Blom, M.J.M. de Jong, M.G. van Munster. Phys. Rev. B 55, R656 (1997)
  28. S.V. Novikov, D.H. Dunlap, V.M. Kenkre et al. Phys. Rev. Lett., 81, 4472 (1998)
  29. S.L. M van Mensfoort, R. Coehoorn. Phys. Rev. B 78, 085 207 (2008)
  30. L. Jun, S. Jiu-Xun, Ch. Zhao. Synth. Met., 159, 1915 (2009)
  31. X. Bo, S. Jiu-Xun, Yang Kai et al. Sci. B, 51, 1415 (2012)
  32. J. Dacuna, A. Salleo. Phys. Rev. B, 84, 195 209 (2011)
  33. M.Z. Szymanski, I.K. Bajer, J.F. Vincent et al. Phys. Rev. B, 85, 195 205 (2012)
  34. S.V. Yampolskii, Yu.A. Genenko, C. Melzer et al. J. Appl. Phys., 109, 073 722 (2011)
  35. A. Salleo, T.W. Chen, A.R. Volkel et al. Phys. Rev. B, 70, 115 311 (2004)
  36. C. Krellner, S. Haas, C. Goldmann et al. Phys. Rev. B, 75, 245 115 (2007)
  37. Y. Roichman, N. Tessler. Appl. Phys. Lett., 80, 1948 (2002)
  38. Y.Q. Peng, J.H. Yang, F.P. Lu. Appl. Phys. A, 83, 305 (2006)
  39. Y.Q. Peng, J.H. Yang, F.P. Lu et al. Appl. Phys. A, 86, 225 (2007)
  40. A. Das, A. Khan. Appl. Phys. A, 93, 527 (2008)
  41. F. Neumann, Y.A. Genenko, H. von Seggern. J. Appl. Phys., 99, 013 704 (2006)
  42. G.A.H. Wetzelaer, L.J.A. Koster, P.W.M. Blom. Phys. Rev. Lett. 107, 066 605 (2011)
  43. W.D. Gill. J. Appl. Phys., 43, 5033 (1972)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.