Вышедшие номера
Modelling and simulation of saturation region in double gate Graphene nanoribbon transistors
Ghadiry Mahdiar1, Nadi Mahdieh2, Rahmani Meysan3, Ahmadi Mohamad3, Abd Mahaf Asrulnizam1
1School of Electrical and Electronic Engineering, Engineering Campus, University Sains Malaysia, Penang, Malaysia
2Department of Computer Engineering, Ashtian Branch, Islamic Azad University, Ashtian, Iran
3Faculty of Electrical and Electronics, University Technologi Malaysia, Skudai, Malaysia
Поступила в редакцию: 23 мая 2011 г.
Выставление онлайн: 20 декабря 2011 г.

A novel analytical model for surface field distribution and saturation region length for double gate graphene nanoribbon transistors has been proposed. The solution for surface potential and electric field has been derived based on Poisson equation. Using the proposed models, the effects of several parameters such as drain-source voltage, oxide thickness and channel length on the length of saturation region and electric field near the drain have been studied.
  1. G. Liang, N. Neophytou et al. J. of Comput. Electron., 7, 394 (2008)
  2. M.C. Lemme, T.J. Echtermeyer et al. IEEE Trans. Electron. Dev. Lett., 28, 282 (2007)
  3. M. Ahmadi, Z. Johari et al. J. Nanomaterials 2010, 1 (2010)
  4. M. Cheli, P. Michetti, G. Iannaccone. IEEE Trans. Electron. Dev., 57, 1939 (2010)
  5. K. Navi, M. Raswhtian et al. Nanoscale Res. Lett. 5, 859 (2010)
  6. R. Sordan, F. Traversi, V. Russo. Appl. Phys. Lett. 94, 1 (2009)
  7. A. Schutz, S. Selberherr, H.W. Po tzl. Solid-State Electron., 25, 177 (1982)
  8. H. Wong. IEEE Trans. Electron. Dev., 42, 2197 (1995)
  9. N.D. Arora, M.S. Sharma. IEEE Trans. Electron. Dev., 38, 1392 (1991)
  10. F.F. Fang, A.B. Fowler. J. Appl. Phys., 41, 1825 (1970)
  11. D. Frohman-Bentchkowsky, A.S. Grove. IEEE Trans. Electron Dev., 16, 108 (1969)
  12. G. Baum, H. Beneking. IEEE Trans. Electron. Dev., 17, 481 (1970)
  13. G. Gildenblat, L. Xin et al. IEEE Trans. Electron. Dev., 53, 1979 (2006)
  14. H. Wong, M.C. Poon. IEEE Trans. Electron. Dev., 44, 2033 (1997)
  15. I. Meric, M.Y. Han et al. Nature Nanotechnology, 3 654 (2008)
  16. H. Wong. Microelectron.i Reliab. 40, 3 (2000)
  17. Q. Zhang, T. Fang et al. IEEE Electron. Dev. lett. 29, 1344 (2008)
  18. M. El Banna, M. El Nokali. Solid-State Electron. 31, 269 (1988)
  19. D. Krizaj, G. Charitat, S. Amon. Solid-State Electron. 39, 1353 (1996)
  20. J.S. Kolhatkar, A.K. Dutta. IEEE Trans. Electron. Dev., 47, 861 (2000)
  21. A.K. Singh. Microelectron. International, 22, 16 (2005)
  22. W. Yang, X. Cheng et al. Solid-State Electron. 49, 43 (2005)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.