Схема VLS-монохроматора высокого разрешения для синхротронного излучения
Министерство науки и высшего образования Российской Федерации, Создание теоретической и экспериментальной платформы для изучения физико-химической механики материалов со сложными условиями нагружения, 075-15-2020-781
Шатохин А.Н.
1, Вишняков Е.А.
1, Колесников А.О.
1, Николенко А.Д.2,3, Рагозин Е.Н.
1
1Физический институт им. П.Н. Лебедева Российской академии наук, Москва, Россия
2Институт ядерной физики им. Г.И. Будкера СО РАН, Новосибирск, Россия
3Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, Россия
Email: shatohinal@gmail.com, juk301@mail.ru, alexey6180@gmail.com, enragozin@gmail.com
Поступила в редакцию: 29 марта 2021 г.
В окончательной редакции: 29 марта 2021 г.
Принята к печати: 29 марта 2021 г.
Выставление онлайн: 27 июня 2021 г.
Рассчитан монохроматор высокого разрешения для широкой спектральной области 125-4200 Angstrem измерительного канала для проектируемого источника синхротронного излучения четвертого поколения "СКИФ" (г. Новосибирск). Оптическая схема монохроматора включает вогнутое зеркало скользящего падения, плоскую VLS-решетку скользящего падения и выходную щель. Предполагается использовать две сменные VLS-решетки для поддиапазонов 125-1000 Angstrem и 900-4200 Angstrem с частотами штрихов в центре решеток 600 и 150 mm-1 соответственно. Перестройка длины волны в каждом из двух диапазонов происходит только за счет поворота VLS-решетки. За счет выбора коэффициентов p1 VLS-решеток, фокусное расстояние изменялось во всем спектральном диапазоне незначительно, а за счет выбора коэффициентов p2 VLS-решеток компенсируются аберрации и зеркала, и решетки. Разрешающая способность схемы, полученная с помощью численной трассировки лучей, превышает 1000 в диапазоне 125-1000 Angstrem и 2000 в диапазоне 900-4200 Angstrem. Ключевые слова: вакуумный ультрафиолет, спектроскопия, VLS-решетка, синхротронное излучение.
- A.V. Bukhtiyarov, V.I. Bukhtiyarov, A.D. Nikolenko, I.P. Prosvirin, R.I. Kvon, O.E. Tereshchenko. AIP Conf. Proc., 2299, 060003 (2020). DOI: 10.1063/5.0030740
- W.R. Hunter, R.T. Williams, J.C. Rife, J.P. Kirkland, M.N. Kabler. Nucl. Instrum. Meth., 195, 141 (1982). DOI: 10.1016/0029-554X(82)90768-6
- M.C. Hettrick, J.H. Underwood. AIP Conf. Proc., 147, 237 (1986). DOI: 10.1063/1.35993
- M.C. Hettrick, J.H. Underwood, P. Batson, M. Eckart. Appl. Opt., 27 (2), 200 (1988). DOI: 10.1364/AO.27.000200
- P. Miotti, N. Fabris, F. Frassetto, C. Spezzani, L. Poletto. AIP Conf. Proc., 2054, 060023 (2019); DOI: 10.1063/1.5084654
- Е.А. Вишняков, А.О. Колесников, А.С. Пирожков, Е.Н. Рагозин, А.Н. Шатохин. Квант. электрон., 48 (10), 916 (2018) [E.A. Vishnyakov, A.O. Kolesnikov, A.S. Pirozhkov, E.N. Ragozin, A.N. Shatokhin. Quant. Electron., 48 (10), 916 (2018)]. DOI: 10.1070/QEL16707
- Е.Н. Рагозин, Е.А. Вишняков, А.О. Колесников, А.С. Пирожков, А.Н. Шатохин. УФН, 191 (5), 522 (2021). [E.N. Ragozin, E.A. Vishnyakov, A.O. Kolesnikov, A.S. Pirozhkov, A.N. Shatokhin. Phys. Usp., 191 (5), 522 (2021). DOI: 10.3367/UFNe.2020.06.038799]
- J. Dunn, E.W. Magee, R. Shepherd, H. Chen, S.B. Hansen, S.J. Moon, G.V. Brown, M.-F. Gu, P. Beiersdorfer, M.A. Purvis. Rev. Sci. Instrum., 79, 10E314 (2008). DOI: 10.1063/1.2968704
- T. Harada, H. Sakuma, K. Takahashi, T. Watanabe, H. Hara, T. Kita. Appl. Opt., 37 (28), 6803 (1998). DOI: 10.1364/AO.37.006803
- M.C. Hettrick, S. Bowyer. Appl. Opt., 22 (24), 3921 (1983). DOI: 10.1364/AO.22.003921
- M.C. Hettrick, S. Bowyer, R.F. Malina, C. Martin, S. Mrowka. Appl. Opt. 24 (12), 1737 (1985). DOI: 10.1364/AO.24.001737
- A. Miyake, T. Miyachi, M. Amemiya, T. Hasegawa, N. Ogushi, T. Yamamoto, F. Masaki, Y. Watanabe. Proc. SPIE, 5037, 647 (2003). DOI: 10.1117/12.484969
- M. Terauchi, S. Koshiya, F. Satoh, H. Takahashi, N. Handa, T. Murano, M. Koike, T. Imazono, M. Koeda, T. Nagano, H. Sasai, Y. Oue, Z. Yonezawa, S. Kuramoto. Microsc. Microanal., 20, 692 (2014). DOI: 10.1017/S1431927614000439
- J.H. Underwood, E.M. Gullikson, M. Koike, S. Mrowka. Proc. SPIE, 3150, 40 (1997). DOI: 10.1117/12.292734
- J.-J. Wang, Y.E. Mao, T. Shi, R. Chang, S. Qiao. Chin. Phys. C, 39 (4), 048001 (2015)
- L. Du, X. Du, Q. Wang, J. Zhong. Nucl. Instrum. Meth. A, 877, 65 (2018). DOI: 10.1016/j.nima.2017.09.045
- O. Fuchs, L. Weinhardt, M. Blum, M. Weigand, E. Umbach, M. Bar, C. Heske, J. Denlinger, Y.-D. Chuang, W. McKinney, Z. Hussain, E. Gullikson, M. Jones, P. Batson, B. Nelles, R. Follath. Rev. Sci. Instrum., 80, 063103 (2009) DOI: 10.1063/1.3133704
- T. Warwick, Y.-D. Chuang, D.L. Voronov, H.A. Padmore. J. Synchrotron Radiat., 21, 736 (2014). DOI: 10.1107/S1600577514009692
- J. Dvorak, I. Jarrige, V. Bisogni, S. Coburn, W. Leonhardt. Rev. Sci. Instrum., 87, 115109 (2016). DOI: 10.1063/1.4964847
- M.A. Cornu. Comptes Rendus Acad. Sci., 117, 1032 (1893)
- T. Harada, S. Moriyama, T. Kita. Jpn. J. Appl. Phys., 14 (51), 175 (1975). DOI:10.7567/JJAPS.14S1.175
- T. Harada, T. Kita. Appl. Opt., 19 (23), 3987 (1980). DOI: 10.1364/AO.19.003987
- T. Kita, T. Harada. Appl. Opt., 31 (10), 1399 (1992). DOI: 10.1364/AO.31.001399
- T. Kita, T. Harada, N. Nakano, H. Kuroda. Appl. Opt., 22 (4), 512 (1983). DOI: 10.1364/AO.22.000512
- Hettrick Scientific [Электронный ресурс] Режим доступа: http://hettrickscientific.com/
- А.О. Колесников, Е.А. Вишняков, А.Н. Шатохин, Е.Н. Рагозин. Квант. электрони., 49 (11), 1054 (2019). [A.O. Kolesnikov, E.A. Vishnyakov, A.N. Shatokhin, E.N. Ragozin. Quant. Electron., 49 (11), 1054 (2019). DOI: 10.1070/QEL17074]
- A.N. Shatokhin, A.O. Kolesnikov, P.V. Sasorov, E.A. Vishnyakov, E.N. Ragozin. Opt. Express, 26 (15), 19009 (2018). DOI: 10.1364/OE.26.019009
- ESRF. XOP (X-ray Oriented Programs) [Электронный ресурс] Режим доступа: https://www.esrf.fr/Instrumentation/ software/ data-analysis/xop2.3
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.