Comparative study of the thermal stability of Be-based extreme ultraviolet pellicles
Zuev S. Yu.1, Lopatin A. Ya.1, Luchin V. I.1, Salashchenko N. N. 1, Tatarskiy D. A.1, Tsybin N. N.1, Chkhalo N. I. 1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: zuev@ipmras.ru, lopatin@ipmras.ru, luchin@ipmras.ru, salashch@ipmras.ru, tatarsky@ipmras.ru, tsybin@ipmras.ru, chkhalo@ipmras.ru

PDF
We demonstrate the possibility of manufacturing Be-based ultrathin films with high transmission at wavelengths of 11.4 and 13.5 nm. For free-standing films of Be and Be-based multilayer structures (Si/Be, ZrSi2/Be, Be/BexNy, Zr/Be, Ru/Be, Mo/Be), we determine the thresholds of the absorbed power at which over a short period (tens of minutes) of vacuum annealing, initially sagging free-standing films became visibly stretched over the hole. Of the film structures tested here, the Be/BexNy structure (with beryllium nitride interlayers) showed the highest threshold for the absorbed power (1 W/cm2). However, due to the low strength of this structure, ZrSi2/Be, Mo/Be, and Be films seem to be more promising for the manufacture of a full-size pellicle. Long-term vacuum annealing of Mo/Be and Be ultrathin films showed that they could withstand 24 hours of vacuum heating at an absorbed power density of 0.2 W/cm2 (film temperature 250oC) without noticeable changes in EUV transmission or sagging of films. With comparable transmission (~83% at 13.5 nm and ~88% at 11.4 nm), a multilayer Mo/Be structure with a thickness of 30 nm appears to be preferable, as it shows less brittleness than a monolayer Be film with a thickness of 50 nm. Keywords: Be-based pellicle, multilayer thin film, EUV lithography, thermal stability
  1. L. Scaccabarozzi, D. Smith, P.R. Diago, E. Casimiri, N. Dziomkina, H. Meijer. Proc. SPIE, 8679, 867904 (2013). DOI: 10.1117/12.2015833
  2. Y. Hyun, J. Kim, K. Kim, S. Koo, S. Kim, Y. Kim, C. Lim, N. Kwak. Proc. SPIE, 9422, 94221U (2015). DOI: 10.1117/12.2085626
  3. M. van de Kerkhof, H. Jasper, L. Levasier, R. Peeters, R. van Es, J.-W. Bosker, A. Zdravkov, E. Lenderink, F. Evangelista, P. Broman, B. Bilski, T. Last. Proc. SPIE, 10143, 101430D (2017). DOI: 10.1117/12.2258025
  4. M.A. van de Kerkhof, F. Liu, M. Meeuwissen, X. Zhang, M. Bayraktar, R.C. de Kruif, N.V. Davydova. J. Micro-Nanolith. MEM., 19 (3), 033801 (2020). DOI: 10.1117/1.JMM.19.3.033801
  5. N. Fu, Y. Liu, X. Ma, Z. Chen. J. Microelectron. Manuf., 2, 19020202 (2019). DOI: 10.33079/jomm.19020202
  6. R. van Es, M. van de Kerkhof, A. Minnaert, G. Fisser, J. de Klerk, J. Smits, R. Moors, E. Verhoeven, L. Levasier, R. Peeters, M. Pieters, H. Meiling. Proc. SPIE, 10583, 105830H (2018). DOI: 10.1117/12.2299503
  7. P.J. van Zwol, M. Nasalevich, W.P. Voorthuijzen, E. Kurganova, A. Notenboom, D. Vles, M. Peter, W. Symens, A.J.M. Giesbers, J.H. Klootwijk, R.W.E. van de Kruijs, W.J. van der Zande. Proc. SPIE, 10451, 104510O (2017). DOI: 10.1117/12.2280560
  8. H. Mizoguchi, H. Nakarai, T. Abe, H. Tanaka, Yu. Watanabe, T. Hori, Yu. Shiraishi, T. Yanagida, G. Soumagne, T. Yamada, T. Saitou. Proc. SPIE, 11323, 113230X (2020). DOI: 10.1117/12.2549905
  9. D.C. Brandt, M. Purvis, I. Fomenkov, D. Brown, A. Schafgans, P. Mayer, R. Rafac. Proc. SPIE, 11609, 116091E (2021). DOI: 10.1117/12.2584413
  10. H. Mizoguchi, H. Nakarai, T. Abe, H. Tanak, Yu. Watanabe, T. Hori, Yu. Shiraishi, T. Yanagida, G. Sumangne, T. Yamada, T. Saitou. Proc. SPIE, 11609, 1160919 (2021). DOI: 10.1117/12.2581910
  11. J. Wiley. EUV Pellicle Progress and Strategy. iEUVi Mask TWG Meeting (Toyama, Japan, 2013)
  12. C. Zoldesi, K. Bal, B. Blum, G. Bock, D. Brouns, F. Dhalluin, N. Dziomkina, J.D.A. Espinoza, J. de Hoogh, S. Houweling, M. Jansen, M. Kamali, A. Kempa, R. Kox, R. de Kruif, J. Lima, Y. Liu, H. Meijer, H. Meiling, I. van Mil, M. Reijnen, L. Scaccabarozzi, D. Smith, B. Verbrugge, L. de Winters, X. Xiong, J. Zimmerman. A. Proc. SPIE, 9048, 90481N (2014). DOI: 10.1117/12.2049276
  13. M. Nasalevich, P.J. van Zwol, E. Abegg, P. Voorthuijzen, D. Vles, M. Peter, W. van der Zande, H. Vermeulen. Proc. SPIE, 10032, 100320L (2016). DOI: 10.1117/12.2255040
  14. J. Hong, C. Park, C. Lee, K. Nam, Y. Jang, S. Wi, J. Ahn. Proc. SPIE, 10809, 108090R (2018). DOI: 10.1117/12.2501772
  15. D. Brouns, P. Broman, J.-W. van der Horst, R. Lafarre, R. Maas, T. Modderman, R. Notermans, G. Salmaso. Proc. SPIE, 11178, 1117806 (2019). DOI: 10.1117/12.2536344
  16. S.Yu. Zuev. A.Ya. Lopatin, V.I. Luchin, N.N. Salashchenko, D.A. Tatarskiy, N.N. Tsybin, N.I. Chkhalo. Tech. Phys., 64 (11), 1590 (2019). DOI: 10.1134/S1063784219110306
  17. M.J. Kim, H. Chul Jeon, R. Chalykh, E. Kim, J. Na, B.-G. Kim, H. Kim, C. Jeon, S.-G. Kim, D.-W. Shin, T. Kim, S. Kim, J.H. Lee, J.-B. Yoo. Proc. SPIE, 9776, 97761Z (2016). DOI: 10.1117/12.2218228
  18. Q. Hu, S.-G. Kim, D.-W. Shin, T.-S. Kim, K.-B. Nam, M.J. Kim, H.-C. Chun, J.-B. Yoo. Carbon, 113, 309 (2017). DOI: 10.1016/j.carbon.2016.11.068
  19. M.Y. Timmermans, I. Pollentier, J.U. Lee, J. Meersschaut, O. Richard, C. Adelmann, C. Huyghebaert, E.E. Gallagher. Proc. SPIE, 10451, 104510P (2017). DOI: 10.1117/12.2280632
  20. J. Bekaert, E. Gallagher, R. Jonckheere, L. Van Look, R. Aubert, V.V. Nair, M.Y. Timmermans, I. Pollentier, E. Hendrickx, A. Klein, G. Yev gen, P. Broman. Proc. SPIE, 11609, 116090Z (2021). DOI: 10.1117/12.2584724
  21. G. Zhang, P. Qi, X. Wang,, Y. Lu, D. Mann, X. Li, H. Dai. J. Am. Chem. Soc., 128 (18), 6026 (2006). DOI: 10.1021/ja061324b
  22. N.I. Chkhalo, M.N. Drozdov, E.B. Kluenkov, A.Ya. Lopatin, V.I. Luchin, N.N. Salashchenko, N.N. Tsybin, L.A. Sjmaenok, V.E. Banine, A.M. Yakunin. J. Micro-Nanolith. MEM., 11 (2), 021115 (2012). DOI: 10.1117/1.JMM.11.2.021115
  23. Y.J. Jang, H.-J. Shin, S.J. Wi, H.N. Kim, G.S. Lee, J. Ahn. Kor. J. Met. Mater., 57 (2), 124 (2019). DOI: 10.3365/KJMM.2019.57.2.124
  24. X-Ray Interactions With Matter [Electronic source] Available at: https://henke.lbl.gov/optical_constants/
  25. N. Chkhalo, A. Lopatin, A. Nechay, D. Pariev, A. Pestov, V. Polkovnikov, N. Salashchenko, F. Schafers, M. Sertsu, A. Sokolov, M. Svechnikov, N. Tsybin, S. Zuev. J. Nanosci. Nanotechnol., 19, 546 (2019). DOI: 10.1166/jnn.2019.16474
  26. N.I. Chkhalo, M.N. Drozdov, S.A. Gusev, A.Ya. Lopatin, V.I. Luchin, N.N. Salashchenko, D.A. Tatarskiy, N.N. Tsybin, S.Yu. Zuev. Appl. Opt., 58 (1), 21 (2019). DOI: 10.1364/AO.58.000021
  27. P.J. van Zwol, D.F. Vles, W.P. Voorthuijzen, M. Peter, H. Vermeulen, W.J. Zande, J.M. Sturm, R.W.E. van de Kruijs, F. Bijkerk. J. Appl. Phys., 118, 213107 (2015). DOI: 10.1063/1.4936851
  28. M.S. Bibishkin, D.P. Chekhonadskih, N.I. Chkhalo, E.B. Klyuenkov, A.E. Pestov, N.N. Salashchenko, L.A. Shmaenok, I.G. Zabrodin, S.Yu. Zuev. Proc. SPIE, 5401, 8-15 (2004)
  29. A.F. Jankowski, M.A. Wall, T.G. Nieh. J. Non-Cryst. Sol., 317 (1--2), 129 (2003). DOI: 10.1016/S0022-3093(02)01993-2
  30. Q. Zhou, Y. Ren, Y. Du, D. Hua, W. Han. Appl. Sci., 8 (10), 1821 (2018). DOI: 10.3390/app8101821
  31. M.S. Bibishkin, N.I. Chkhalo, S.A. Gusev, E.B. Kluenkov, A.Y. Lopatin, V.I. Luchin, A.E. Pestov, N.N. Salashchenko, L.A. Shmaenok, N.N. Tsybin, S.Y. Zuev. Proc. SPIE, 7025, 702502 (2008). DOI: 10.1117/12.802347
  32. W. de la Cruz, G. Soto, F. Yubero. Opt. Mater., 25 (1), 39 (2004). DOI: 10.1016/S0925-3467(03)00214-3

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru