K. K. Maevskii 1,2
1Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
Email: konstantinm@hydro.nsc.ru
The results of research on modeling thermodynamic parameters of shock-wave loading of carbides with different stoichiometric ratios are presented. The carbides are considered as a mixture of carbon with the corresponding component. The calculations of pressure, compression and temperature values under shock-wave loading for solid and porous carbides in the range of pressure values above 3 GPa are performed. The model calculations are compared with the known experimental results on the shock-wave loading of carbides with different porosity values. The possibility of modeling the behavior according to the proposed method for carbides for which there are no experimental data at high dynamic loads is shown. Keywords: Equation of state, shock adiabat, thermodynamic equality, porous heterogeneous medium, carbides
- F.A. Akopov, M.A. Adrianov, R.Kh. Amirov, T.I. Borodina, L.B. Borovkova, G.E. Val'yano, A.Yu. Dolgoborodov, V.V. Tkachenko, M.B. Shavelkina. Refract. Ind. Ceram., 57 (5), 496 (2017). DOI: 10.1007/s11148-017-0011-5
- A.A. Bakanova, V.A. Bugaeva, I.P. Dudoladov, R.F. Trunin, Izv. Akad. Nauk SSSR. Ser. Fiz. Zemli, 6, 58 (1995) (in Russian)
- M.N. Pavlovskii, Fiz. Tverd. Tela, 12 (7), 2175 (1970) (in Russian)
- R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, W.J. Carter. The Equation of State of Solids from Shock Wave Studies / In: High Velocity Impact Phenomena, ed. by R. Kinslow (Academic Press, NY., 1970)
- W.H. Gust, E.B. Royce. J. Appl. Phys., 42, 276 (1971). DOI: 10.1063/1.1686902
- D. Grady. J. Phys. IV Proceedings, EDP Sci., 04 (C8), C8-385-C8-391 (1994). DOI: 10.1051/jp4:1994859
- T.J. Vogler, W.D. Reinhart, L.C. Chhabildas. J. Appl. Phys., 95, 4173 (2004). DOI: 10.1063/1.1686902
- Y. Zhang, T. Mashimo, Y. Uemura, M. Uchino, M. Kodama, K. Shibata, K. Fukuoka, M. Kikuchi, T. Kobayashi, T. Sekine. J. Appl. Phys., 100, 113536 (2006). DOI: 10.1063/1.2399334
- D.E. Grady. J. Appl. Phys., 117, 165904 (2015). DOI: 10.1063/1.4918604
- P. Dera, M.H. Manghnani, A. Hushur, Yi. Hu, S. Tkachev. J. Solid State Chem., 215, 85 (2014). DOI: 10.1016/j.jssc.2014.03.018
- S.A. Dyachkov, A.N. Parshikov, M.S. Egorova, S.Yu. Grigoryev, V.V. Zhakhovsky, S.A. Medin. J. Appl. Phys., 124, 085902 (2018). DOI: 10.1063/1.5043418
- D.E. Fratanduono, P.M. Celliers, D.G. Braun, P.A. Sterne, S. Hamel, A. Shamp, E. Zurek, K.J. Wu, A.E. Lazicki, M. Millot, G.W. Collins. Phys. Rev. B, 94, 184107 (2016). DOI: 10.1103/PhysRevB.94.184107
- A.M. Molodets, A.A. Golyshev, D.V. Shakhrai. J. Exp. Theor. Phys., 80, 467 (1995). DOI: 10.1134/S1063776117030049
- K.K. Maevskii. AIP Conf. Proc., 2167, 020204 (2019). DOI: 10.1063/1.5132071
- A.S. Savinykh, I.A. Cherepanov, S.V. Razorenov, A.I. Ovsienko, V.I. Rumyantsev, S.S. Ordan'yan. Tech. Phys., 63, 1755 (2018). DOI: 10.1134/S1063784218120186
- R.Kh. Bagramova, N.R. Serebryanaya, V.M. Prokhorov, V.D. Blank. Tech. Phys., 63 (7), 1010 (2018). DOI: 10.1134/S1063784218070046
- A.S. Savinykh, G.V. Garkushin, S.V. Razorenov, V.I. Rumyantsev. Tech. Phys., 60, 863 (2015). DOI: 10.1134/S1063784215060249
- A.I. Savvatimskii, S.V. Onufriev. High Temp., 58, 800 (2020). DOI: /10.1134/S0018151X20060188
- B.D. Sahoo, K.D. Joshi, T.C. Kaushik. Comput. Condens. Matter., 21, e00431 (2019). DOI: 10.1016/j.cocom.2019.e00431
- J.S. Olsen, L. Gerward, U. Benedict, J.-P. Itie, K. Richter. J. Less Common Metal., 121, 445 (1986). DOI: 10.1016/0022-5088(86)90561-8
- B.D. Sahoo, K.D. Joshi, Satish C. Gupta, J. Nucl. Mater., 437, 81 (2013). DOI: 10.1016/j.jnucmat.2013.01.314
- B.D. Sahoo, D. Mukherjee, K.D. Joshi, T.C. Kaushik. J. Appl. Phys., 120, 085902 (2016). DOI: 10.1063/1.4961497
- J.-P. Dancausse, S. Heathman, U. Benedict, L. Gerward, J. Staun Olsen, F. Hulliger J. Alloy. Compd., 191, 309 (1993). DOI: 10.1016/0925-8388(93)90084-Z
- V.N. Senchenko, R.S. Belikov. J. Phys.: Conf. Ser., 1147, 012011. (2019). DOI: 10.1088/1742-6596/1147/1/012011
- A.S. Savinykh, I.A. Cherepanov, S.V. Razorenov, K. Mandel, L. Kruger. Tech. Phys., 64, 356 (2019). DOI: 10.1134/S1063784219030216
- R.F. Trunin, Issledovaniya ekstremal'nykh sostoyanii kondensirovannykh veshchestv metodom udarnykh voln. Uravneniya Gyugonio (RFYaTs-VNIIEF, Sarov, 2006), p. 137 (in Russian).
- A.Ya. Pak, T.Yu. Yakich, G.Ya. Mamontov, M.A. Rudmin, Yu.Z. Vasil'eva. Tech. Phys., 65, 771 (2020). DOI: 10.1134/S1063784220050205
- S.A. Rasakia, B. Zhanga, K. Anbalgamb, T. Thomas, M. Yang. Prog. Solid State Chem., 50, 1 (2018) DOI: 10.1016/j.progsolidstchem.2018.05.001
- D. Cho, J.H. Park, Y. Jeong, Y.L. Loo. Ceram. Int., 41, 10974 (2015) DOI: 10.1016/j.ceramint.2015.05.041
- Q. Dong, M. Huang, C. Guo, G. Yu, M. Wu. Int. J. Hydrogen Energy, 42, 3206 (2017) DOI: 10.1016/j.ijhydene.2016.09.217
- A.N. Ishchenko, S.A. Afanas'eva, N.N. Belov, V.V. Burkin, S.V. Galsanov, V.Z. Kasimov, V.A. Kudryavtsev, Ya.D. Lipatnikova, L.S. Martsunova, K.S. Rogaev, A.Yu. Sammel', A.B. Skosyrskii, N.T. Yugov. Tech. Phys., 65, 414 (2020). DOI: 10.1134/S106378422003010X
- A.S. Savinykh, K. Mandel, S.V. Razorenov, L. Kruger. Tech. Phys., 63, 357 (2018). DOI: 10.1134/S1063784218030210
- K.K. Maevskii. J. Phys. Conf. Series., 894, 012057 (2017). DOI: 10.1088/1742-6596/894/1/012057
- K.K. Maevskii, S.A. Kinelovskii. High Temperature, 56 (6) 853 (2018). DOI: 10.1134/S0018151X18060172
- K.K. Maevskii, S A Kinelovskii. J. Phys. Conf. Series., 946, 012113 (2018). DOI: 10.1088/1742-6596/946/1/012113
- K.K. Maevskii. Math. Montis., 41, 123 (2018)
- K.K. Maevskii. Tech. Phys., 66, 791 (2021). DOI: 10.1134/S1063784221050145
- Ya.B. Zel'dovich, Yu.P. Raizer, Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Fizmatlit, M., 2008), p. 519 (in Russian)
- P.R. Levashov, K.V. Khishchenko, I.V. Lomonosov, V.E. Fortov. AIP Conf. Proc., 706, 87 (2004). http://www.ihed.ras.ru/rusbank/
- M.N. Pavlovskii, Fiz. Tverd. Tela, 13 (3), 893 (1970) (in Russian)
- S.P. Marsh (editor). LASL Shock Hugoniot Data (Univ. California Press, Berkeley, 1980)
- R.F. Trunin, L.F. Gudarenko, M.V. Zhernokletov, G.V. Simakov, Eksperimental'nye dannye po udarno-volnovomu szhatiyu i adiabaticheskomu rasshireniyu kondensirovannykh veshchestv (RFYaTs-VNIIEF, Sarov, 2006) (in Russian)
- A.M. Molodets, A.A. Golyshev, G.V. Shilov. JETP Lett., 111 (12), 720 (2020). DOI: 10.1134/S0021364020120103
- M. DeVries, G. Subhash, A. Awasthi. Phys. Rev. B, 101, 144107 (2020). DOI: 10.110
- I.V. Lomonosov, V.E. Fortov, A.A. Frolova, K.V. Khishchenko, A. A. Charakhchyan, L.V. Shurshalov. Tech. Phys., 48, 727 (2003). DOI: 10.1134/1.1583826
- A.V. Ostrik, Konstr. Kompoz. Mater., 2, 48 (2018) (in Russian)
- K.K. Maevskii, S.A. Kinelovskii. AIP Conf. Proc., 1783, 020143 (2016). DOI: 10.1063/1.4966436
- K.K. Maevskii. Math. Montis., 50, 140 (2021). DOI: 10.20948/mathmontis-2021-50-12
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.