On the vacancy nature of the high-temperature background of internal friction in solids
S.A. Gridnev 1, Y.E. Kalinin1
1Voronezh State Technical University, Voronezh, Russia
Email: kalinin48@mail.ru

PDF
High-temperature internal friction in an amorphous CuTi alloy is investigated. Exponential regions with different activation energies are observed on the dependence of internal friction on temperature on both sides of the glass transition temperature. An exponential increase in the background of internal friction with temperature in both sites is associated with the migration of vacancy-like defects in the amorphous structure under the influence of mechanical stresses, while frozen defects of constant concentration migrate to the glass transition temperature. After the transition to a state of thermodynamic equilibrium, the concentration the number of migrating defects increases exponentially. Based on the experimental results of measuring the high-temperature background, estimates of the activation energy of migration and the formation of vacancies of similar defects in the amorphous structure of the alloy under study are made. Keywords: Internal friction, relaxation time, high temperature background, amorphous alloy.
  1. A.S. Novick, B.S. Berry. Anelastic Relaxation in Crystalline Solids (Academic Press, NY., London, 1972)
  2. V.S. Postnikov. Vnutrenneye treniye v metallakh (Metallurgiya, M., 1974) (in Russian)
  3. B.Ya. Pines, A.A. Karmazin. FMM, 22 (4), 632 (1966) (in Russian)
  4. B.I. Shapoval, V.M. Arzhavitin. Mekhanizmy vysokotemperaturnogo fona vnutrennego treniya metallov: Obzor (TsNIIatominform, M., 1988) (in Russian)
  5. G. Schoek, B. Bisogni, J. Shune. Acta Metal., 12 (12), 1466 (1964)
  6. B. Escaig. Acta Metal., 10, 829 (1962)
  7. B.M. Darinsky, Yu.A. Fedorov, T.D. Shermergor. Fix. khim. obr. mat., 2, 106 (1967) (in Russian)
  8. A.A. Gorshkov, V.A. Lomovskoy, E.K. Naimi. Vestnik MITHT, 4 (6), 86 (2009) (in Russian)
  9. V.G. Kulkov. Relaksatsionnye yavleniya na granitsakh zeren v metallakh (MEI Branch, Volzhsky, 2015) (in Russian)
  10. I.V. Zolotukhin, Yu.E. Kalinin. FTT, 37 (2), 536 (1995) (in Russian)
  11. I.V. Andreyev, Yu.S. Balashov, O.V. Mazurin. FKhS, 6 (2), 203 (1980) (in Russian)
  12. N.P. Kobelev, I.G. Brodova, Ya.M. Sovi fer, A.N. Manukhin. Phys. Solid State, 41 (4), 501 (1999). DOI: 10.1134/1.1130813
  13. I.V. Zolotukhin, Y.E. Kalinin. Soviet Physics Uspekhi, 33 (9), 720 (1990). DOI: 10.1070/PU1990v033n09ABEH002628
  14. Y.E. Kalinin, B.M. Darinskii. Metal Science and Heat Treatment, 54 (5-6), 221 (2012)
  15. J. Qiao, J.-M. Pelletier, R. Casalini. J. Phys. Chem. B, 117, 13658 (2013)
  16. N.P. Kobelev, J.C. Qiao, A.S. Makarov, A.M. Glezer, V.A. Khonik. J. Alloys Comp., 869, 159275 (2021). DOI: 10.1016/j.jallcom.2021.1592750
  17. V.M. Arzhavitin, A.A. Vasil'ev, K.V. Kovtun, M.S. Sungurov, O.V. Trembach, V.A. Finkel'. Phys. Solid State, 57 (7), 1289 (2015). DOI: 10.1134/S1063783415070045
  18. V.S. Bilanich, V.B. Onishchak, I.I. Makauz, V.M. Rizak. Phys. Solid State, 52 (9), 1820 (2010). DOI: 10.1134/S1063783410090064
  19. A.N. Kabanskaya, V.A. Lomovskoy, A.A. Gorshkov, Z.I. Fomkina, E.V. Kopylova. Vestnik MITHT, 8 (5), 89 (2013) (in Russian)
  20. G.M. Bartenev, A.G. Barteneva. Relaksatsionnye svoistva polimerov (Khimiya, M., 1992) (in Russian)
  21. Y.E. Kalinin, A.T. Kosilov, O.V. Ovdak, A.M. Kudrin, O.A. Karaeva, M.A. Kashirin, D.Y. Degtyarev. Tech. Phys., 64 (4), 535 (2019). DOI: 10.1134/S1063784219040121
  22. V.A. Lomovoskoi, N.A. Abaturova, N.Yu. Lomovskaya, O.A. Khlebnikova, T.B. Galushko. Polymer Science, series A, 60 (3), 284 (2018). DOI: 10.1134/S0965545X18030070
  23. V.I. Betekhtin, A.G. Kadomtsev, A.Yu. Kipyatkova, A.M. Glezer. Phys. Solid State, 40 (1), 74 (1998)
  24. D.S. Sanditov, M.I. Ojovan. Physics-Uspekhi, 62 (2), 111 (2019). DOI: 10.3367/UFNe.2018.04.038319
  25. H.S. Chen, C.E. Miller. Rev. Sci. Instr., 41 (8), 1237 (1970)
  26. V.K. Belonogov, I.V. Zolotukhin, V.M. Iyevlev, V.S. Postnikov. Fiz. khim. obrab. mater., 5, 163 (1968) (in Russian)
  27. H.S. Chen, N. Morito. J. Non-Crystal. Sol., 75 (2), 287 (1985)
  28. M. Tan, Y. He. J. Non-Crystal. Sol., 105 (1), 155 (1988)
  29. I.V. Zolotukhin, Yu.E. Kalinin, A.M. Roschupkin. FKhS, 18 (1), 157 (1992) (in Russian)
  30. N.P. Kobelev, E.L. Kolyvanov, V.A. Khonik. Phys. Solid State, 45 (12), 2225 (2003). DOI: 10.1134/1.1635489
  31. G.M. Bartenev, V.A. Lomovskoi. Polymer Science, series A, 44 (8), 841 (2002)
  32. V.A. Lomovskoy. Tonk. khim. tekhn. 10 (3), 8 (2015) (in Russian)
  33. A.A. Petrukhin, V.A. Lomovskoj. Materialovedenie (Mater. Sci.), 3, 3 (2001)
  34. G.M. Bartenev, V.A. Lomovskoi. Russ. J. Phys. Chem. A, 77 (12), 2045 (2003)
  35. G.M. Bartenev, D. Shermatov, A.G. Barteneva. Polymer Sci., series A, 43 (7), 708 (2001)
  36. A.A. Valishin, A.A. Gorshkov, V.A. Lomovskoy. Mech. Sol., 46 (2), 299 (2011)
  37. T.R. Aslamazova, V.A. Lomovsko, A.Yu. Tsivadze. Polymer Sci., series A, 55 (12), 729 (2013). DOI: 10.1134/S0965545X13120031
  38. T.R. Aslamazova, V.A. Kotenev, N.Y. Lomovskaya, V.A. Lomovskoi, A.Y. Tsivadze. Protection Met. Phys. Chem. Surf., 52 (6), 1012 (2016). DOI: 10.1134/S2070205116060071
  39. T.R. Aslamazova, V.I. Zolotarevskii, N.Y. Lomovskaya, V.A. Lomovskoi, V.A. Kotenev., A.Y. Tsivadze. Protection Met. Phys. Chem. Surf., 54 (1), 85 (2018). DOI: 10.1134/S2070205118010021
  40. V.A. Lomovskoi, N.A. Abaturova, N.Yu. Lomovskaya, T.B. Galushko, V.I. Zolotarevskii. Polymer Sci., Series A, 61 (4), 491 (2019). DOI: 10.1134/S0965545X19040114
  41. D.S. Sanditov. Dokl. Phys. Chem., 464|,(2), 255 (2015). DOI: 10.1134/S0012501615100097
  42. D.S. Sanditov. J. Experiment. Theor. Phys., 123 (3), 429 (2016). DOI: 10.1134/S1063776116070219
  43. Ya.I. Fraenkel. Vvedeniye v teoriyu metallov (Nauka, L., 1972) (in Russian)
  44. D.S. Sanditov, M.V. Darmayev, V.V. Mantatov. Vest. Buryat. gos. un-t khim., fiz., 1, 15 (2020) (in Russian). DOI: 10.18101/2306-2363-2020-1-15-22
  45. D.S. Sanditov, M.V. Darmaev, B.D. Sanditov. Tech. Phys., 62 (1), 53 (2017). DOI: 10.1134/S1063784217010200
  46. D.S. Sanditov. J. Experiment. Theoret. Phys., 115 (1), 112 (2012). DOI: 10.1134/S1063776112060143
  47. S.V. Nemilov, Yu.S. Balashov. Glass Phys. Chem., 42 (2), 119 (2016). DOI: 10.1134/S1087659616020139
  48. G.M. Bartenev, D.S. Sanditov. Relaksatsionnye protsessy v stekloobraznykh sistemakh (Nauka, Novosibirsk, 1986) (in Russian)
  49. Yu.E. Kalinin, A.V. Sitnikov, D.P. Tarasov. Tech. Phys. Lett., 34 (6), 459 (2008). DOI: 10.1134/S1063785008060035
  50. I.V. Zolotukhin, Yu.E. Kalinin, O.V. Stogney. Novye napravleniya fizicheskogo materialovedeniya (VGU, Voronezh, 2000)
  51. T.V. Tropin, Ju.W.P. Schmelzer, V.L. Aksenov. 59, 42 (2016). DOI: 10.3367/UFNe.0186.201601c.0047

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru