High temperature superconducting magnetic system for neuron activity researches
Diev D.N.1, Kovalev I.A.1, Makarenko M.N.1, Naumov A.V.1, Polyakov A.V1, Surin M.I.1, Shutova D.I.1, Shcherbakov V.I.1
1National Research Center “Kurchatov Institute”, Moscow, Russia
Email: shutovadi@mail.ru

PDF
The paper describes a high-temperature superconducting magnetic system (HTS SMS) to equip an experimental stand intended for neuron activity researches under constant and low-frequency magnetic fields up to 1 T. The design of the magnetic system together with its electromagnetic and cryogenic parameters is briefly discussed. The test results of the preliminary experiments conducted in liquid nitrogen at 77 K for two interchangeable magnets are given. The first magnet was manufactured in the form of a double pancake coil wound with 4 mm high HTS tape. The second magnet was made of pure copper wire with no frame and was impregnated with a thermally conducting epoxy resin. The advantages of the HTS pancake coil were demonstrated in comparison with the cryo-resistive solenoid. Low energy consumption of the HTS magnetic system will allow conducting continuous non-invasive monitoring of biological objects in a magnetic field. Keywords: superconductivity, high-temperature superconductor, REBCO tape, cryogen magnetic system, magnetic field, neuron activity.
  1. J. Minervini, M. Parizh, M. Schippers. Supercond. Sci. Technol., 31, 030301 (2018). https://doi.org/10.1088/1361-6668/aaa826
  2. A.V. Maksimov, V.V. Kiryanova, M.A. Maksimova. Fizioterapiya, balneologiya i reabilitatsiya, 3, 34 (2013) (in Russian)
  3. A. Molodyk, S. Samoilenkov, A. Markelov, P. Degtyarenko, S. Lee, V. Petrykin, M. Gaifullin, A. Mankevich, A. Vavilov, B. Sorbom, J. Cheng, S. Garberg, L. Kesler, Z. Hartwig, S. Gavrilkin, A. Tsvetkov, T. Okada, S. Awaji, D. Abraimov, A. Francis, G. Bradford, D. Larbalestier, C. Senatore, M. Bonura, A.E. Pantoja, S.C. Wimbush, N.M. Strickland, A. Vasiliev. Sci. Rep., 11, 2084 (2021). DOI: 10.1038/s41598-021-81559-z
  4. D. Le Bihan, T. Schild. Supercond. Sci. Technol., 30 (3), 033003 (2017). DOI: 10.1088/1361-6668/30/3/033003
  5. T.F. Budinger, M.D. Bird, L. Frydman, J.R. Long, Th.H. Mareci, W.D. Rooney, B. Rosen, J.F. Schenck, V.D. Schepkin, A.D. Sherry, D.K. Sodickson, Ch.S. Springer, K.R. Thulborn, K. Uv gurbil, L.L. Wald. Magn. Reson. Mater. Phys., Biol. Med., 29 (3), 617 (2016). DOI: 10.1007/s10334-016-0561-4
  6. D. Zahn, K. Klein, P. Radon, D. Berkov, S. Erokhin, E. Nagel, M. Eichhorn, F. Wiekhorst, S. Dutz. Nanotechnol., 31, 95101 (2020). DOI: DOI: 10.1088/1361-6528/abb0b4
  7. D. Li, Y. Ren. IEEE Trans. Appl. Supercond., 28 (6), 1 (2018). DOI: 10.1109/tasc.2018.2836999
  8. T. Hasegawa, H. Nakagam, Y. Akiyama, S. Nishijima. Prog. Supercond. Cryog., 19 (1), 9 (2017). DOI: 10.9714/psac.2017.19.1.009
  9. B. Shen, J. Geng, C. Li, X. Zhang, L. Fu, H. Zhang, Jun Ma, T.A. Coombs. Physica C, 538, 46 (2017). DOI: 10.1016/j.physc.2017.05.009
  10. K. Narasaki, S. Tsunematsu. IOP Conf. Series, 755, 012107 (2020). DOI: 10.1088/1757-899X/755/1/012107
  11. G. Wang, P. Zhang, S.K. Mendu, Y. Wang, Ya. Zhang, Xi Kang, B.N. Desai, J.J. Zhu. bioRxiv preprint (2019). http://dx.doi.org/10.1101/737254
  12. M.A. Wheeler, C.J. Smith, M. Ottolini, B.S. Barker, A.M. Purohit, R.M. Grippo, R.P. Gaykema, A.J. Spano, M.P. Beenhakker, S. Kucenas, M.K. Patel, Ch.D. Deppmann, A.D. Guler. Nat. Neurosci., 19 (5), 756 (2016). DOI: 10.1038/nn.4265
  13. S.A. Stanley, L. Kelly, K.N. Latcha, S.F. Schmidt, X. Yu1, A.R. Nectow, J. Sauer, J.P. Dyke, J.S. Dordick, J.M. Friedman. Nature, 531, 647 (2016). DOI: 10.1038/nature17183
  14. S.A. Stanley, J. Sauer, R.S. Kane, J.S. Dordick, J.M. Friedman. Nature Medicine, 21 (1), 92 (2015). DOI: 10.1038/nm.3730
  15. A.V. Polyakov, V.I. Shcherbakov, S.A. Shevchenko, M.I. Surin. Phys. Procedia, 45, 241 (2013). DOI: 10.1016/j.phpro.2013.05.012
  16. A.V. Naumov, I.A. Kovalev, D.N. Diev, A.O. Olenev, A.V. Polyakov, M.I. Surin, V.I. Shcherbakov. Nanotech. in Russia, 14, 613 (2019). DOI: 10.1134/S1995078019060119
  17. Resource centers of the Kurchatov Complex for NBICS --- nature-like technologies, OnLine: http://www.rc.nrcki.ru/pages/main/neuron/index.shtml
  18. D.N. Diyev, I.A. Kovalev, M.N. Makarenko, A.V. Naumov, A.V. Polyakov, M.A. Surin, D.I. Shutova, V.I. Scherbakov. Elektrichestvo, 8, 13 (2021) (in Russian). DOI: 10.24160/0013-5380-2021-8-13-20
  19. D.N. Diev, M.N. Makarenko, A.V. Naumov, A.V. Polyakov, V.I. Shcherbakov, D.I. Shutova, M.I. Surin. Prog. Supercond. Cryog., 21 (3), 47 (2019). DOI: 10.9714/psac.2019.21.3.047
  20. Ya.L. Abeliov. VIAM/2005-204279, Klei. Germetiki. Tekhnologii, 8, (2005) (in Russian)
  21. Electronic source. Available at: FEMM https://www.femm.info/wiki/Download

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru