The effects of local environment on a probe signal absorption and resonance fluorescence for quantum emitters in transparent media
Smirnova E. A. 1,2,3, Lozing N. A. 1,2,3, Gladush M. G. 1,3, Naumov A. V. 1,3,4
1Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
2National Research University Higher School of Economics, Moscow, Russia
3Moscow Pedagogical State University, Moscow, Russia
4Troitsk separate subdivision of Lebedev Physical Institute, Troitsk, Moscow, Russia
Email: ksmirno@yandex.ru, Lozing@phystech.edu, mglad@isan.troitsk.ru, a_v_naumov@mail.ru

PDF
The current paper demonstrates theoretical analysis of two types of spectral curves for several configurations of system of two-level light emitters, considering the influence of local field and close environment inside a transparent medium. Probe field absorption spectra and resonant fluorescence spectra are calculated under excitation of a strong monochromatic cw laser. The sensitivity of absorption and emission optical spectroscopy method is compared for revealing the effects of the medium on individual emitters and their ensembles. Spectral curves were calculated for model emitters considering local field influence of a transparent dielectric medium and local electron-phonon interactions, which determined the response of the emitters to an external laser field and effective relaxation mechanisms. The calculation formalism is based on a semiclassical approach, while the relaxation processes associated with the phonon contribution are introduced phenomenologically with references to other studies. Keywords: absorption spectrum, resonance fluorescence, probe field method, quantum dot, electron-phonon interaction, local field.
  1. F.Y. Wu, R.E. Grove, S. Ezekeil. Phys. Rev. Lett. 35 (21), 1426 (1975). DOI: 10.1103/PhysRevLett.35.1426
  2. H.J. Kimble, M. Dagenais, L. Mandel. Phys. Rev. Lett. 39 (11), 691 (1977). DOI: 10.1103/PhysRevLett.39.691
  3. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, V. Sandoghdar. Nature Physics. 4 (1), 60 (2008). DOI: 10.1038/nphys812
  4. A. Ulhaq, S. Weiler, C. Roy, S.M. Ulrich, M. Jetter, S. Hughes, P. Michler. Opt. Express, 21 (4), 4382 (2013). DOI: 10.1364/OE.21.004382
  5. Y.-J. Wei, Y. He, Y.-M. He, C.-Y. Lu, J.-W. Pan, C. Schneider, M. Kamp, S. Hofling, D.P.S. McCutcheon, A. Nazir. Phys. Rev. Lett., 113 (9), 097401 (2014). DOI: 10.1103/PhysRevLett.113.097401
  6. D. Chen, Z. Mu. Y. Zhou, J.E. Froch, A. Rasmit, C. Diederichs, N. Zheludev, I. Aharonovich, W.-B. Gao. Phys. Rev. Lett., 123 (3), 033602 (2019). DOI: 10.1103/PhysRevLett.123.033602
  7. R. Vlasov, A. Lemeza, M. Gladush. Laser Phys. Lett., 10 (4), 045401 (2013). DOI: 10.1088/1612-2011/10/4/045401
  8. A.A. Panteleev, Vl.K. Rerikh, A.N. Starostin. JETP, 90 (1), 50 (2000). DOI: 10.1134/1.559093
  9. A.A. Panteleev, Vl.K. Roerieh. JETP, 92 (2), 210 (2000). DOI: 10.1134/1.1354678
  10. L. Mandel, E. Wolf. Optical Coherence and Quantum Optics, (Cambridge University Press, Cambrigde, 1995). DOI: 10.1119/1.18450
  11. M.O. Scully, M.S. Zubairy. Quantum Optics, (Cambridge University Press, Cambrigde, 1997). DOI: 10.1017/CBO9780511813993
  12. P. Apanasevich, S.Y. Kilin. Journal of Applied Spectroscopy, 24 (4), 528 (1976). DOI: 10.1007/BF00938675
  13. B.R. Mollow. Phys. Rev., 188 (5), 1969 (1969). DOI: 10.1103/PhysRev.188.1969
  14. A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, D.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih. Phys. Rev. Lett., 99, 187402 (2007). DOI: 10.1103/PhysRevLett.99.187402
  15. C. Hettich, C. Schmitt, J. Zitzmann, S. Kuhn, I. Gerhard, V. Sandogdar. Science, 298 (5592), 385 (2002). DOI: 10.1126/science.1075606
  16. S.G. Rautian, G.I. Smirnov, A.M. Shalagin. Nelineynye rezonansy v spektrakh atomov i molekul (Nauka, Novosibirsk, 1970) (in Russian)
  17. M.G. Gladush, T.A. Anikushina, A.A. Gorshelev, T.V. Plakhotnik, A.V. Naumov. JETP, 128 (5), 655 (2019). DOI: 10.1134/S1063776119030038
  18. D.V. Kuznetsov, Vl.K. Roerich, M.G. Gladush. Theor. Math. Phys., 168 (2), 1078 (2011). DOI: 10.1007/s11232-011-0089-8
  19. N.A. Lozing, M.G. Gladush, I.Y. Eremchev, E.A. Ekimov, A.V. Naumov. Phys. Rev. B, 102 (6), 060301 (2020). DOI: 10.1103/PhysRevB.102.060301
  20. M.G. Gladush, D.V. Kuznetsov, Vl.K. Roerich. The European Physical Journal D, 64 (2), 511 (2011). DOI: 10.1140/epjd/e2011-20194-0
  21. A.V. Naumov, A.A. Gorshelev, M.G. Gladush, T.A. Anikushina, A.B. Golovanova, J. Kohler, L. Kador. Nanoletters, 18 (10), 6129 (2018). DOI: 10.1021/acs.nanolett.8b01753
  22. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambrigde, 2013). DOI: https://doi.org/10.1017/CBO9781139644181

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru