Dependence of the energy of emission molecular orbitals in short open carbon nanotubes on the electric field
Tomilin O. B.1, Rodionova E. V.1, Rodin E.A.1, Poklonski N. A.2, Anikeyev I. I.2, Ratkevich S. V.2
1Mordovia State University, Saransk, Russia
2Belarusian State University, Minsk, Republic of Belarus
Email: Rodionova_j87@mail.ru
On the examples of short open carbon nanotubes of armchair type (n,n), for n=3, 4, and zigzag (n,0), for n=5, 6, 7, the influence of the magnitude and direction of the external constant electric field vector on their field emission properties was studied. It is shown that the deviation of the field vector from the nanotube axis leads to an increase in the field strength to generate electron field emission. Emission orbitals in carbon nanotubes (n,n) found as a result of a new type of conjugation of p-electrons in cylindrical conjugated systems are more sensitive to a change in the direction of the electric field vector compared to emission orbitals in nanotubes (n,0). When the electric field vector deviates from the nanotube axis, the emission orbitals of carbon nanotubes change the less, the larger the nanotube diameter. Keywords: short open carbon nanotubes, field emission, conjugation of p-electrons, emission molecular orbital.
- I.D. Evsikov, S.V. Mit'ko, P.Yu. Glagolev, N.A. Dyuzhev, G.D. Demin. Technical Physics 65, 11, 1846 (2020). https://doi.org/10.1134/S1063784220110067
- E.G. Rakov. Russ. Chem. Rev. 82, 6, 538 (2013). https://doi.org/10.1070/RC2013v082n06ABEH004340
- A.V. Eletskii. Physics-Uspekhi 53, 9, 863 (2010). https://iopscience.iop.org/article/10.3367/UFNe.0180.201009a. 0897
- F. Giubileo, A. Di Bartolomeo, L. Iemmo, G. Luongo, F. Urban. Appl. Sci. 8, 4, 526 (2018). https://doi.org/10.3390/app8040526
- E.D. Eidelman, A.V. Arkhipov. Physics-Uspekhi 63, 7, 648 (2020). https://iopscience.iop.org/article/10.3367/UFNe.2019.06. 038576
- S. Parveen, A. Kumar, S. Husain, M. Husain. Physica B 505, 1 (2017). https://doi.org/10.1016/j.physb.2016.10.031
- O.B. Tomilin, E.V. Rodionova, E.A. Rodin. Russ. J. Phys. Chem. A 94, 8, 1657 (2020). https://doi.org/10.1134/S0036024420080269
- O.B. Tomilin, E.V. Rodionova, E.A. Rodin. Russ. J. Phys. Chem. A 95, 9, 1883 (2021). https://doi.org/10.1134/S0036024421090296
- P. von Rague Schleyer, H. Jiao, M.N. Glukhovtsev, J. Chandrasekhar, E. Kraka. J. Am. Chem. Soc. 116, 22, 10129 (1994). https://doi.org/10.1021/ja00101a035
- A.A. Fokin, H. Jiao, P. von Rague Schleyer. J. Am. Chem. Soc. 120, 36, 9364 (1998). https://doi.org/10.1021/ja9810437
- A.V. Tuchin, L.A. Bityutskaya, E.N. Bormontov. Nano- i mikrosistemnaya tekhnika, 4, 19 (2013) (in Russian). http://www.microsystems.ru/files/publ/article201304p19-21.pdf
- A.V. Tuchin, L.A. Bityutskaya, E.N. Bormontov. Physics of the Solid State 56, 8, 1685 (2014). https://doi.org/10.1134/S1063783414080277
- R.I. Gearba, T. Mills, J. Morris, R. Pindak, C.T. Black, X. Zhu. Adv. Funct. Mater. 21, 14, 2666 (2011). https://doi.org/10.1134/S1063783414080277
- T. Dumitricva, Ch.M. Landis, B.I. Yakobson. Chem. Phys. Lett. 360, 1-2, 182 (2002). https://doi.org/10.1016/S0009-2614(02)00820-5
- N.A. Poklonski, S.V. Ratkevich, S.A. Vyrko, A.T. Vlassov. Int. J. Nanosci. 18, 03n04, 1940008 (2019). https://doi.org/10.1142/S0219581X19400088
- O.B. Tomilin, N.A. Poklonski, E.V. Rodionova, E.A. Rodin, I.I. Anikeev, V.A. Kushnerov, A.S. Chitalov. Materialy i struktury sovremennoy elektroniki. Materialy IX Mezhdunar. nauch. konf. (14-16 Oct. 2020) BSU, Minsk (2020). P. 406 (in Russian). https://elib.bsu.by/handle/123456789/257358
- S. Han, J. Ihm. Phys. Rev. B 66, 24, 241402(R) (2002). https://doi.org/10.1103/PhysRevB.66.241402
- P. Yaghoobi, M.V. Moghaddam, A. Nojeh. In: 23rd Int. Vacuum Nanoelectronic Conf. Palo Alto, CA (2010). P. 115 https://doi.org/10.1109/IVNC.2010.5563199
- A. Navitski, G. Muller, V. Sakharuk, A.L. Prudnikava, B.G. Shulitski, V.A. Labunov. J. Vac. Sci. Technol. B 28, 2, C2B14 (2010). http://dx.doi.org/10.1116/1.3300062
- J.-W. Song, Y.-S. Kim, Y.-H. Yoon, E.-S. Lee, C.-S. Han, Y. Cho, D. Kim, J. Kim, N. Lee, Y.-G. Ko, H.-T. Jung, S.-H. Kim. Physica E 41, 8, 1513 (2009). https://doi.org/10.1016/j.physe.2009.04.031
- M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. J. Comp. Chem. 14, 11, 1347 (1993). https://doi.org/10.1002/jcc.540141112
- A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tomanek. Science 269, 5230, 1550 (1995). https://doi.org/10.1126/science.269.5230.1550
- M.D. Bel'skii, G.S. Bocharov, A.V. Eletskii, T.J. Sommerer. Technical Physics 55, 2, 289 (2010). https://doi.org/10.1134/S1063784210020210
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.