Photoinduced State of Floquet Insulator in Graphene-like Crystal
Kukhar E. I. 1, Kryuchkov S. V. 2,3
1Volgodonsk Engineero-Technological Institute of the National Research Nuclear University MEPhI, Volgodonsk, Russia
2Volgograd State Socio-Pedagogical University, Volgograd, Russia
3Volgograd State Technical University, Volgograd, Russia
Email: eikuhar@yandex.ru, svkruchkov@yandex.ru

PDF
Floquet spectrum of charge carriers in a 2D-crystal with initially displaced Dirac points has been derived. The phase and amplitude dependences of the energy gap induced by elliptically polarized and bichromatic high-frequency fields has been investigated. In contrast to graphene the linearly polarized electric field has been shown to be able to transform the initially semi-metallic state of Dirac crystal into the Floquet-insulator state. The conditions for such a transition are indicated, one of which is the mismatch between the orientation of the field polarization line and the direction of the crystallographic axes. Keywords: Floquet Spectrum, Quasienergy, Dirac Crystal, Semi-Dirac Crystal, Graphene, Floquet Topological Insulator.
  1. A. Khandelwal, K. Mani, M.H. Karigerasi, I. Lahiri. Mater. Sci. Eng. B, 221, 17 (2017). DOI: 10.1016/j.mseb.2017.03.011
  2. L. Zhang, Md.M. Hasan, Y. Tang, A.R. Khan, H. Yan, T. Yildirim, X. Sun, J. Zhang, J. Zhu, Y. Zhang, Y. Lu. Mater. Today, 50, 442 (2021). DOI: 10.1016/j.mattod.2021.02.021
  3. L.X. Yang, Z.K. Liu, Y. Sun, H. Peng, H.F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y.F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.K. Mo, C. Felser, B. Yan, Y.L. Chen. Nat. Phys., 11, 728 (2015). DOI: 10.1038/nphys3425
  4. J. Prasongkit, V. Shukla, A. Grigoriev, R. Ahuja, V. Amornkitbamrung. Appl. Surf. Sci., 497, 143660 (2019). DOI: 10.1016/j.apsusc.2019.143660
  5. B. Datta, J. Vaidya, S. Ghatak, R. Dhingra, R. Mondal, J. Jesudasan, A. Thamizhavel, M.M. Deshmukh. Appl. Phys. Lett., 119, 133501 (2021). DOI: 10.1063/5.0067684
  6. D.S. Novikov. Phys. Rev. B, 76, 245435 (2007). DOI: 10.1103/PhysRevB.76.245435
  7. O.V. Kibis, O. Kyriienko, I.A. Shelykh. Phys. Rev. B, 84, 195413 (2011). DOI: 10.1103/PhysRevB.84.195413
  8. N.E. Firsova, S.A. Ktitorov. Phys. Solid State, 63, 313 (2021). DOI: 10.1134/S1063783421020074
  9. S. Banerjee, W.E. Pickett. Phys. Rev. B, 86, 075124 (2012). DOI: 10.1103/PhysRevB.86.075124
  10. X. Dai, L. Liang, Q. Chen, C. Zhang. J. Phys. Condens. Matter, 31, 135703 (2019). DOI: 10.1088/1361-648X/aafdd5
  11. A. Mawrie, B. Muralidharan. Phys. Rev. B, 99, 075415 (2019). DOI: 10.1103/PhysRevB.99.075415
  12. J.P. Carbotte, K.R. Bryenton, E.J. Nicol. Phys. Rev. B, 99, 115406 (2019). DOI: 10.1103/PhysRevB.99.115406
  13. F.M. Vergara, F. Rus, F.R. Villatoro. Chaos, Solitons Fractals, 151, 111281 (2021). DOI: 10.1016/j.chaos.2021.111281
  14. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye. ACS Nano, 8, 4033 (2014). DOI: 10.1021/nn501226z
  15. M. Ezawa. J. Phys. Conf. Ser., 603, 012006 (2015). DOI: 10.1088/1742-6596/603/1/012006
  16. G.G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, H. Terrones. Rep. Prog. Phys., 80, 096501 (2017). DOI: 10.1088/1361-6633/aa74ef
  17. G. Montambaux, F. Piechon, J.-N. Fuchs, M.O. Goerbig. Eur. Phys. J. B, 72, 509 (2009). DOI: 10.1140/epjb/e2009-00383-0
  18. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit. Nature, 496, 196 (2013). DOI: 10.1038/nature12066
  19. Y.H. Wang, H. Steinberg, P. Jarillo-Herrero, N. Gedik. Science, 342, 453 (2013). DOI: 10.1126/science.1239834
  20. C.P. Weber. J. Appl. Phys., 129, 070901 (2021). DOI: 10.1063/5.0035878
  21. T. Oka, H. Aoki. Phys. Rev. B, 79, 081406 (2009). DOI: 10.1103/PhysRevB.79.081406
  22. O.V. Kibis. Phys. Rev. B, 81, 165433 (2010). DOI: 10.1103/PhysRevB.81.165433
  23. G. Usaj, P.M. Perez-Piskunow, L.E.F. Foa Torres, C.A. Balseiro. Phys. Rev. B, 90, 115423 (2014). DOI: 10.1103/PhysRevB.90.115423
  24. L. Bucciantini, S. Roy, S. Kitamura, T. Oka. Phys. Rev. B, 96, 041126 (2017). DOI: 10.1103/PhysRevB.96.041126
  25. A. Lopez, A. Di Teodoro, J. Schliemann, B. Berche, B. Santos. Phys. Rev. B, 92, 235411 (2015). DOI: 10.1103/PhysRevB.92.235411
  26. K. Dini, O.V. Kibis, I.A. Shelykh. Phys. Rev. B, 93, 235411 (2016). DOI: 10.1103/PhysRevB.93.235411
  27. P. Rodriguez-Lopez, J.J. Betouras, S.E. Savel'ev. Phys. Rev. B, 89, 155132 (2014). DOI: 10.1103/PhysRevB.89.155132
  28. R. Wang, B. Wang, R. Shen, L. Sheng, D.Y. Xing. Europhys. Lett., 105, 17004 (2014). DOI: 10.1209/0295-5075/105/17004
  29. H. Hubener, M.A. Sentef, U. De Giovannini, A.F. Kemper, A. Rubio. Nat. Commun., 8, 13940 (2017). DOI: 10.1038/ncomms13940
  30. H.L. Calvo, H.M. Pastawski, S. Roche, L.E.F. Foa Torres. Appl. Phys. Lett., 98, 232103 (2011). DOI: 10.1063/1.3597412
  31. J. Cayssol, B. Dora, F. Simon, R. Moessner. Phys. Status Solidi RRL, 7, 101 (2013). DOI: 10.1002/pssr.201206451
  32. S.V. Kryuchkov, E.I. Kukhar. JNEP, 8 (4), 04057 (2016). DOI: 10.21272/jnep.8(4(2)).04057
  33. P. Delplace, A. Gomez-Leon, G. Platero. Phys. Rev. B, 88, 245422 (2013). DOI: 10.1103/PhysRevB.88.245422
  34. E.I. Kukhar, S.V. Kryuchkov. Physica E, 134, 114811 (2021). DOI: 10.1016/j.physe.2021.114811
  35. O.V. Kibis, S. Morina, K. Dini, I.A. Shelykh. Phys. Rev. B, 93, 115420 (2016). DOI: 10.1103/PhysRevB.93.115420
  36. S.V. Kryuchkov, E.I. Kukhar. Physica B, 445, 93 (2014). DOI: 10.1016/j.physb.2014.04.008
  37. A. Eckardt, E. Anisimovas. New J. Phys., 17, 093039 (2015). DOI: 10.1088/1367-2630/17/9/093039

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru