Фотоиндуцированное состояние Флоке-изолятора в графеноподобном кристалле
Кухарь Е.И.
1, Крючков С.В.
2,31Волгодонский инженерно-технический институт, филиал Национального исследовательского ядерного университета "Московский инженерно-физический институт", Волгодонск, Россия
2Волгоградский государственный социально-педагогический университет, Волгоград, Россия
3Волгоградский государственный технический университет, Волгоград, Россия
Email: eikuhar@yandex.ru, svkruchkov@yandex.ru
Поступила в редакцию: 28 октября 2021 г.
В окончательной редакции: 8 декабря 2021 г.
Принята к печати: 9 декабря 2021 г.
Выставление онлайн: 4 января 2022 г.
Получен Флоке-спектр носителей заряда в 2D-кристалле с изначально смещенными дираковскими точками. Исследованы фазовая и амплитудная зависимости энергетической щели, наводимой эллиптически поляризованным и бихроматическим высокочастотными полями. Показано, что в отличие от графена линейно поляризованное электрическое поле способно переводить изначально полуметаллическое состояние дираковского кристалла в состояние Флоке-изолятора. Указаны условия такого перехода, одним из которых является несовпадение ориентации линии поляризации поля и направления кристаллографических осей. Ключевые слова: Флоке-спектр, квазиэнергия, кристалл Дирака, полудираковский кристалл, графен, топологический изолятор Флоке.
- A. Khandelwal, K. Mani, M.H. Karigerasi, I. Lahiri. Mater. Sci. Eng. B, 221, 17 (2017). DOI: 10.1016/j.mseb.2017.03.011
- L. Zhang, Md.M. Hasan, Y. Tang, A.R. Khan, H. Yan, T. Yildirim, X. Sun, J. Zhang, J. Zhu, Y. Zhang, Y. Lu. Mater. Today, 50, 442 (2021). DOI: 10.1016/j.mattod.2021.02.021
- L.X. Yang, Z.K. Liu, Y. Sun, H. Peng, H.F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y.F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.K. Mo, C. Felser, B. Yan, Y.L. Chen. Nat. Phys., 11, 728 (2015). DOI: 10.1038/nphys3425
- J. Prasongkit, V. Shukla, A. Grigoriev, R. Ahuja, V. Amornkitbamrung. Appl. Surf. Sci., 497, 143660 (2019). DOI: 10.1016/j.apsusc.2019.143660
- B. Datta, J. Vaidya, S. Ghatak, R. Dhingra, R. Mondal, J. Jesudasan, A. Thamizhavel, M.M. Deshmukh. Appl. Phys. Lett., 119, 133501 (2021). DOI: 10.1063/5.0067684
- D.S. Novikov. Phys. Rev. B, 76, 245435 (2007). DOI: 10.1103/PhysRevB.76.245435
- O.V. Kibis, O. Kyriienko, I.A. Shelykh. Phys. Rev. B, 84, 195413 (2011). DOI: 10.1103/PhysRevB.84.195413
- Н.Е. Фирсова, С.А. Ктиторов. ФТТ, 63 (2), 277 (2021). DOI: 10.21883/FTT.2021.02.50478.148 [N.E. Firsova, S.A. Ktitorov. Phys. Solid State, 63, 313 (2021). DOI: 10.1134/S1063783421020074]
- S. Banerjee, W.E. Pickett. Phys. Rev. B, 86, 075124 (2012). DOI: 10.1103/PhysRevB.86.075124
- X. Dai, L. Liang, Q. Chen, C. Zhang. J. Phys. Condens. Matter, 31, 135703 (2019). DOI: 10.1088/1361-648X/aafdd5
- A. Mawrie, B. Muralidharan. Phys. Rev. B, 99, 075415 (2019). DOI: 10.1103/PhysRevB.99.075415
- J.P. Carbotte, K.R. Bryenton, E.J. Nicol. Phys. Rev. B, 99, 115406 (2019). DOI: 10.1103/PhysRevB.99.115406
- F.M. Vergara, F. Rus, F.R. Villatoro. Chaos, Solitons Fractals, 151, 111281 (2021). DOI: 10.1016/j.chaos.2021.111281
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye. ACS Nano, 8, 4033 (2014). DOI: 10.1021/nn501226z
- M. Ezawa. J. Phys. Conf. Ser., 603, 012006 (2015). DOI: 10.1088/1742-6596/603/1/012006
- G.G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, H. Terrones. Rep. Prog. Phys., 80, 096501 (2017). DOI: 10.1088/1361-6633/aa74ef
- G. Montambaux, F. Piechon, J.-N. Fuchs, M.O. Goerbig. Eur. Phys. J. B, 72, 509 (2009). DOI: 10.1140/epjb/e2009-00383-0
- M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit. Nature, 496, 196 (2013). DOI: 10.1038/nature12066
- Y.H. Wang, H. Steinberg, P. Jarillo-Herrero, N. Gedik. Science, 342, 453 (2013). DOI: 10.1126/science.1239834
- C.P. Weber. J. Appl. Phys., 129, 070901 (2021). DOI: 10.1063/5.0035878
- T. Oka, H. Aoki. Phys. Rev. B, 79, 081406 (2009). DOI: 10.1103/PhysRevB.79.081406
- O.V. Kibis. Phys. Rev. B, 81, 165433 (2010). DOI: 10.1103/PhysRevB.81.165433
- G. Usaj, P.M. Perez-Piskunow, L.E.F. Foa Torres, C.A. Balseiro. Phys. Rev. B, 90, 115423 (2014). DOI: 10.1103/PhysRevB.90.115423
- L. Bucciantini, S. Roy, S. Kitamura, T. Oka. Phys. Rev. B, 96, 041126 (2017). DOI: 10.1103/PhysRevB.96.041126
- A. Lopez, A. Di Teodoro, J. Schliemann, B. Berche, B. Santos. Phys. Rev. B, 92, 235411 (2015). DOI: 10.1103/PhysRevB.92.235411
- K. Dini, O.V. Kibis, I.A. Shelykh. Phys. Rev. B, 93, 235411 (2016). DOI: 10.1103/PhysRevB.93.235411
- P. Rodriguez-Lopez, J.J. Betouras, S.E. Savel'ev. Phys. Rev. B, 89, 155132 (2014). DOI: 10.1103/PhysRevB.89.155132
- R. Wang, B. Wang, R. Shen, L. Sheng, D.Y. Xing. Europhys. Lett., 105, 17004 (2014). DOI: 10.1209/0295-5075/105/17004
- H. Hubener, M.A. Sentef, U. De Giovannini, A.F. Kemper, A. Rubio. Nat. Commun., 8, 13940 (2017). DOI: 10.1038/ncomms13940
- H.L. Calvo, H.M. Pastawski, S. Roche, L.E.F. Foa Torres. Appl. Phys. Lett., 98, 232103 (2011). DOI: 10.1063/1.3597412
- J. Cayssol, B. Dora, F. Simon, R. Moessner. Phys. Status Solidi RRL, 7, 101 (2013). DOI: 10.1002/pssr.201206451
- S.V. Kryuchkov, E.I. Kukhar. JNEP, 8 (4), 04057 (2016). DOI: 10.21272/jnep.8(4(2)).04057
- P. Delplace, A. Gomez-Leon, G. Platero. Phys. Rev. B, 88, 245422 (2013). DOI: 10.1103/PhysRevB.88.245422
- E.I. Kukhar, S.V. Kryuchkov. Physica E, 134, 114811 (2021). DOI: 10.1016/j.physe.2021.114811
- O.V. Kibis, S. Morina, K. Dini, I.A. Shelykh. Phys. Rev. B, 93, 115420 (2016). DOI: 10.1103/PhysRevB.93.115420
- S.V. Kryuchkov, E.I. Kukhar. Physica B, 445, 93 (2014). DOI: 10.1016/j.physb.2014.04.008
- A. Eckardt, E. Anisimovas. New J. Phys., 17, 093039 (2015). DOI: 10.1088/1367-2630/17/9/093039
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.