Formation of submicron cone-shaped surface morphology under ion-beam sputtering of nanostructured nickel
Borisov A. M.
1, Mashkova E. S.
2, Ovchinnikov M. A.
2, Khisamov R. Kh.
3, Mulyukov R. R.
31Moscow Aviation Institute National Research University, Moscow, Russia
2Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
3Institute of Metal Superplasticity Problems, Russian Academy of Sciences, Ufa, Bashkortostan, Russia
Email: anatoly_borisov@mail.ru, es_mashkova@mail.ru, ov.mikhail@gmail.com, r.khisamov@mail.ru, radik@imsp.ru
The results of a research on the surface morphology of nanostructured nickel after high-fluence irradiation with 30 keV argon ions have been presented. The nanostructure in nickel was formed by high-pressure torsion deformation. It has been shown that deformation nanostructuring of nickel and subsequent ion-beam sputtering allows receiving a surface uniformly coated with submicron cones. The thermal stability of the obtained cone-shaped structure on nanostructured nickel has been determined. Keywords: nanostructure, high-pressure torsion, ion irradiation, cones, thermal stability.
- R. Behrish, W. Eckstein, Sputtering by particle bombardment (Springer-Verlag, Berlin-Heidelberg, 2007). DOI: 10.1007/978-3-540-44502-9
- M.M. Kharkov, A.V. Kaziev, D.V. Danilyuk, M.S. Kukushkina, N.A. Chernyh, A.V. Tumarkin, D.V. Kolodko, Appl. Surf. Sci., 527, 146902 (2020). DOI: 10.1016/j.apsusc.2020.146902
- J. Majumdar, S. Bhattacharjee, Front. Phys., 9, 674928 (2021). DOI: 10.3389/fphy.2021.674928
- B. He, Y. Yang, M.F. Yuen, X.F. Chen, C.S. Lee, W.J. Zhang, Nano Today, 8, 265 (2013). DOI: 10.1016/j.nantod.2013.04.008
- G.G. Bondarenko, V.I. Kristya, D.O. Savichkin, Vacuum, 149, 114 (2018). DOI: 10.1016/j.vacuum.2017.12.028
- N.M. Ghoniem, A. Sehirlioglu, A.L. Neff, J-P. Allain, B. Williams, R. Sharghi-Moshtaghin, Appl. Surf. Sci., 331, 299 (2015). DOI: 10.1016/j.apsusc.2014.12.201
- G. De Temmerman, K. Heinola, D. Borodin, S. Brezinsek, R.P. Doerner, M. Rubel, E. Fortuna-Zalesna, C. Linsmeier, D. Nishijima, K. Nordlund, M. Probst, J. Romazanov, E. Safi, T. Schwarz-Selinger, A. Widdowson, B.J. Braams, H-K Chung, C. Hill, Nucl. Mater. Energy, 27, 100994 (2021). DOI: 10.1016/j.nme.2021.100994
- D.M. Zayachuk, Y.D. Zayachuk, C. Buga, V.E. Slynko, A. Csi k, Vacuum, 186, 110058 (2021). DOI: 10.1016/j.vacuum.2021.110058
- I. Bizyukov, O. Girka, . Kaczmarek, M. Klich, M. Myroshnyk, B. Januszewicz, S. Owczarek, Nucl. Instrum. Meth. Phys. Res. B, 436, 272 (2018). DOI: 10.1016/j.nimb.2018.10.011
- L.B. Begrambekov, A.M. Zakharov, Nucl. Instrum. Meth. Phys. Res. B, 90, 477 (1994). DOI: 10.1016/0168-583X(94)95597-2
- G. Carter, I.V. Katardjiev, M.J. Nobes, J.L. Whitton, Mater. Sci. Eng., 90, 21 (1987). DOI: 10.1016/0025-5416(87)90191-1
- Q. Shi, S. Kajita, N. Ohno, M. Tokitani, D. Nagata, S. Feng, J. Appl. Phys., 128, 023301 (2020). DOI: 10.1063/5.0010416
- L.B. Begrambekov, A.M. Zakharov, V.G. Telkovsky, Nucl. Instrum. Meth. Phys. Res. B, 115, 456 (1996). DOI: 10.1016/0168-583X(95)01514-0
- A.A. Nazarov, R.R. Mulyukov, in Handbook of nanoscience. engineering and technology, ed. by W.A. Goddard III, D. Brenner, S.E. Lyshevski, G.J. Iafrate (CRC Press, Boca Raton, 2002). ch. 22. DOI: 10.1201/9781420040623
- I.K. Razumov, A.Y. Yermakov, Yu.N. Gornostyrev, B.B. Straumal, Phys. Usp., 63, 733 (2020). DOI: 10.3367/UFNe.2019.10.038671
- R.Kh. Khisamov, R.R. Timiryaev, I.M. Safarov, R.R. Mulyukov, Letters on Materials, 10 (2), 223 (2020). DOI: 10.22226/2410-3535-2020-2-223-226 (in Russian)
- E.S. Mashkova, V.A. Molchanov, Medium-energy ion reflection from solids (North-Holland, Amsterdam, 1985)
- R.Kh. Khisamov, I.M. Safarov, R.R. Mulyukov, Yu.M. Yumaguzin, Phys. Solid State, 55, 1 (2013). DOI: 10.1134/S1063783413010186
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.