Implementation of Morse potential for approximation of vibrational terms of diatomic molecules
Denisov G. S. 1, Tokhadze K. G. 1
1St. Petersburg State University, St. Petersburg, Russia
We analysed the problem of approximation of the potential function of a diatomic molecule by a Morse model function with constant anharmonicity ν x using the Birge-Sponer extrapolation. The analysis of the approximations used in the derivation of the Morse equation shows that the solution of this problem is ambiguous. A scheme for optimizing the selection of initial parameters is proposed, which is illustrated by examples taken from the literature. The advantages of delineation of anharmonicity in the excitation of vibrational levels by deviations of the value ν x from the constant value according to Morse are demonstrated. An attempt is made to use the dimensionless anharmonicity parameter x* as a universal characteristic of the shape features of the electronic term of the molecule. Keywords: Morse potential, diatomic molecule, Birge-Sponer extrapolation, anharmonicity, electronic terms, vibrational structure.
- Elyashevich MA Molekulyarnaya spektroskopiya. KOMKniga, 2007. 528 p. (in Russian)
- Piela L. Ideas of Quantum Chemistry. 3-d Ed. 2020. P. 224-229
- Dogra S.K., Randhava H.S. Molecular Spectroscopy. McGraw-Hill, 2012. 944 p
- Svanberg S. Atomic and Molecular Spectroscopy. Springer Verlag, 4-th Ed. 2004. 588 p
- McHale J.L. Molecular Spectroscopy. 2-d Ed. CRC Press, 2017. 457 p
- Demtroder W. Molecular Physics. WILEY-VCH, 2005. 470 p
- Herzberg G. Spektry i stroenie dvukhatomnyjh molekul. M.: IL, 1949. (in Russian) 403 p.; Herzberg G. Molecular Spectra and Molecular Structure I. Diatomic Molecules. New York., 1939
- Le Roy R.J. Determining Equilibrium Structures and Potential Energy Functions for Diatomic Molecules, Ch. 6, in: Equilibrium Molecular Structures, Eds: Demaison J., Boggs J.E., Csaszar A.G. CRC Press, 2011. P. 159--204
- Hua W. // Phys. Rev. A. 1990. V. 42. N 5. P. 2524
- Leonard A., Deffner S. // Chem. Phys. 2015. V. 446. P. 18. doi.org/10.1016/j.chemphys.2014.10.020
- Walton J.R., Rivera-Rivera L.A. // J. Phys. Chem. A. 2016. V. 120. N 42. P. 8347. doi 10.1021/acs.jpca.6b05371
- Tuttle W.D., Harris J.P., Zheng Y., Breckenridge W.H., Wright T.G. // J. Phys. Chem. A. 2018. V. 122. N 38. P. 7679. doi 10.1021/acs.jpca.8b07139
- Morse P.M. // Phys. Rev. 1929. V. 34. N 1. P. 57
- Krasnoshchekov S.V., Chang X. // Int. Rev. Phys. Chem. 2019. V. 38. P. 63. doi.org/10.1018/0144235X.2019.1593583
- Li A.Z., Harter W.G. // Chem. Phys. Lett. 2015. V. 633. P. 208. doi 10.1016/j.cplett.2015.05.035
- Belfakir A., Hassouni Y., Curado E.L.F. // Phys. Lett. A. 2020. V. 384. N 22. P. 126553. doi.org/10.1016/j.physleta.2020.126553
- Singh K.P., Kenfack A., Rost J.M., Pfeifer T. // Phys. Rev. A. 2018. V. 97. N 3. P. 33406. doi 10.1103/PhysRevA.97.03.033406
- Bader P., Blanes S., Kopylov N. // J. Chem. Phys. 2018. V. 148. N 24. P. 244109/7. doi.org/10.1063/1.5036838
- Birge R.T., Sponer H. // Phys. Rev. 1926. V. 28. N 2. P. 259
- Gaydon A. Energii dissotsiatsii i spektry dvukhatomnykh molekul. M.: IL, 1949. 302 p.; (in Russian). Gaydon G. Dissociation Energies and Spectra of Diatomic Molecules. Chapman \& Hall, L. 1968
- Lessinger L. // J. Chem. Educ. 1994. V. 71. N 5. P. 388
- McCoy A.B. // Chem. Phys. Lett. 2011. V. 501. P. 603. doi 10.1016/j.cplett.2010.11.065
- Wolniewicz L. // J. Chem. Phys. 1993. V. 99. N 3. P. 1851. doi.org/10.1063/1.465303
- Cardoen W., Gdanitz R.J. // J. Chem. Phys. 2005. V. 123. N 2. P. 024304. doi.org/10.1063/1.1949194
- Bytautas L., Matsunaga N., Ruedenberg K. // J. Chem. Phys. 2010. V. 132. N 7. P. 074307. doi.org/10.1063/1.3298376
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.