Physics of the Solid State
Volumes and Issues
Effect of gamma-induced defects on the activator glow in Lu2SiO5 : Ce scintillator crystals
Islamov A. Kh.1, Ibragimova E. M. 1, Kudratov Kh. N.1, Vildanov R. R.2
1Institute of Nuclear Physics, Uzbek Academy of Sciences, Tashkent, Uzbekistan
2Mirzo Ulug’bek National University of Uzbekistan, Tashkent, Uzbekistan
Email: akhatqul@inp.uz, ibragimova@inp.uz

PDF
Correlations were studied between the optical absorption (OA) spectra and the integral curves of thermal glow (TG) in 300-600 K after irradiation of Lu2SiO5 : Ce scintillation crystals with 60Co gamma-quanta (1.17 and 1.33 MeV) at the dose rate 1.1 Gy/s in the dose range 70-5·107 Gy at 310 K and their gamma-luminescence (GL). There are intrinsic defects caused by technological process, such as neutral VO5-centers with OA band at 193 nm and charged =Si-VO5 - 213 nm, Lu1-F^+-Si - 238 nm, Ce3+/Ce4+ - 263 nm, and Ce3+/F - 295 nm centers. Irradiation to the dose 5·104 Gy resulted in decreasing in VO5-center concentration, but did not influenced on others. While, after doses >5·104 Gy concentrations of all other mentioned defects grew. The observed recovery of OA at 193 nm and decrease in TG peak at 335 K with the ageing time (1, 3 and 10 hours) at 305 K, and also the correlated growth of OA at 238 nm and TG peak at 540 K after serial irradiations to doses from 70 to 2.3·106 Gy are due to releasing electrons from these color centers followed by radiative recombination at Ce1-centers. However Ce3+ GL yield decrease at 400 and 420 nm at doses >105 Gy is possible related with increasing concentrations of =Si-VO4, Lu1-F^+-Si and Ce3+/F centers, which compete with Ce1 ones in trapping electrons. Thus, the upper limit for stable Lu2SiO5 : Ce gamma-scintillation is 105 Gy. Keywords: Lu2SiO5 : Ce, color centers, gamma-induced luminescence, scintillation dose limit.
  1. J. Zhu, M. Gu, L. Jia, G. Song. Mater. Lett. 256, 126410 (2019)
  2. K.A. McDonald, M.R. McDonald, M.N. Bailey, G.K. Schweitzer. Dalton Trans. 47, 37, 13190 (2018)
  3. C. Melcher, J. Schweitzer. IEEE Trans. Nucl. Sci. 39, 4, 502 (1992)
  4. C.L. Melcher, M. Schmand, M. Eriksson, L. Eriksson, M. Casey, R. Nutt, J.L. Lefaucheur, B. Chai. IEEE Trans. Nucl. Sci. 47, 3, 965 (2000)
  5. P. Dorenbos, A.J.J. Bos, C.W.E. van Eijk. Condens. Matter 14, 4, L99 (2002)
  6. D.W. Cooke, B.L. Bennett, R.E. Muenchausen, J.-K. Lee, M.A. Nastasi. J. Lumin. 106, 2, 125 (2004)
  7. E. Auffray, A. Barysevich, A. Fedorov, M. Korjik, M. Koschan, M. Lucchini, V. Mechinski, C.L. Melcher, A. Voitovich. Nucl. Instrum. Methods. Phys. Res. A 721, 76 (2013)
  8. B. Bilki. J. Phys: Conf. Ser. 587, 1, 14 (2015). DOI: 10.1088/1742-6596/587/1/012014
  9. M. Korjik, E. Auffray. IEEE Trans. Nucl. Sci. 63, 2, 552 (2016)
  10. C. Hu, F. Yang, L. Zhang, R.-Y. Zhu, J. Kapustinsky, R. Nelson, Zh. Wang. IEEE Trans. Nucl. Sci. 65, 4, 1018 (2018). DOI: 10.1109/TNS.2018.2808841
  11. M. Kobayashi, M. Ishii, C.L. Melcher. Nucl. Instrum. Methods. Phys. Res. A 335, 3, 509 (1993)
  12. P. Dorenbos, C.W.E. van Eijk, A.J.J. Bost, C.L. Melcher. J. Phys.: Condens. Matter 6, 22, 4167 (1994)
  13. S. Blahuta, A. Bessiere, B. Viana, V. Ouspenski, E. Mattman, J. Lejay, D. Gourier. Materials 4, 7, 1224 (2011)
  14. B. Liu, Z. Qi, M. Gu, X. Liu, S. Huang, C. Ni. J. Phys.: Condens. Matter. 19, 43, 436215 (2007)
  15. T. Gustafsson, M. Klintenberg, S.E. Derenzo, M.J. Weber, J.O. Thomas. Acta Crystallogr. Sect. C 57, 6, 668 (2001). doi.org/10.1107/S0108270101005352
  16. D.W. Cooke, B.L. Bennett, K.J. McClellan, J.M. Roper, M.T. Whittaker, A.M. Portis. Phys. Rev. B 61, 18, 11973 (2000)
  17. C.L. Melcher, J.S. Schweitzer. Nucl. Instrum. Methods. Phys. Res. A 314, 1, 212 (1992)
  18. M. Kitauraa, S. Tanaka, M. Itoh. J. Lumin. 158, 226 (2015). doi.org/10.1016/j.jlumin.2014.10.010
  19. V.Yu. Ivanov, E.S. Shulgin, V.A. Pustovarov, V.V. Mazurenko, V.B. Shulgin. FTT 25, 9, 1628 (2008) (in Russian)
  20. Yu. Zorenko, T. Zorenko, T. Voznyak, O. Sidletskiy. J. Lumin. 137, 204 (2013). doi.org/10.1016/j.jlumin.2013.01.012
  21. A.R. Silin, A.N. Trukhin. Tochechnye defekty i elementarnye vozbuzhdeniya v kristallicheskom i stekloobraznom SiO2. Zinatne, Riga (1985). 244 p. (in Russian)
  22. A.Kh. Islamov, U.S. Salikhbaev, E.M. Ibragimova, I. Nuritdinov, B.S. Fayzullaev, K.Yu. Vukolov, I. Orlovskiy. J. Nucl. Mater. 443, 1-3, 393 (2013). doi.org/10.1016/j.jnucmat.2013.07.027
  23. D.W. Cooke, M.W. Blair, J.F. Smith, B.L. Bennett, L.G. Jacobsohn. IEEE Trans. Nucl. Sci. 55, 3, 1118 (2008). doi.org/10.1109/TNS.2008.922798
  24. D. Ding, He. Feng, G. Ren, M. Nikl, L. Qin, Sh. Pan, F. Yang. IEEE Trans. Nucl. Sci. 57, 3, 1272 (2010)
  25. B. Liu, Ch. Shi, M. Yin, Y. Fu, G. Zhang, G. Ren. J. Lumin. 117, 129 (2006)
  26. K. Yang, C.L. Melcher, P.D. Rack, L.A. Eriksson. IEEE Trans. Nucl. Sci. 56, 5, 2960 (2009)
  27. D.W. Cooke, K.J. McClellan, B.L. Bennett, J.M. Roper, M.T. Whittaker, R.E. Muenchausen. J. Appl. Phys. 88, 12, 7360 (2000)
  28. D.W. Cooke, B.L. Bennett, K.J. McClellan, J.M. Roper, M.T. Whittaker. J. Lumin. 92, 83 (2001)
  29. A.F. Rakov, U.S. Salikhbaev, A.Kh. Islamov, R.H. Bartram, C.L. Melcher. J. Lumin. 130, 2004 (2010)
  30. A. Lempicki, J. Glodo. Nucl. Instrum. Methods. Phys. Res. A 416, 2-3, 333 (1998).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru