Raman and Photoluminescence Spectra for Ho, Er, Tm, Yb, Lu, and Y doped Hafnia
Shkerin S.N.1, Meshcherskikh A.N.1, Yaroslavtseva T.V.2, Abdurakhimova R.K.1
1Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
Email: shkerin@mail.ru
Previously obtained and certified HfO2 based samples were investigated by two Raman spectrometers with different wave source. Stokes reflexes have to be independent of the laser frequency so they were distinguished by comparison of different laser results. For the first time the dependence of Stokes lines frequencies on the cation radii of dopants was observed. Frequencies monotonically varied with the ratio of cation-dopant to hafnium radii changes. All non-Stokes reflexes are considered as photoluminescence. They were compared with both the literature data on luminescence of REM cations and the experimental results on zirconia-based materials intrinsic photoluminescence, which was a property of its point defects. Intrinsic photoluminescence is observed for the first time on hafnia-based materials. Keywords: Raman spectroscopy, luminescence, hafnia with cubic structure, REE.
- V.N. Chebotin, M.V. Perfilyev. Elektrokhimiya tverdykh elektrolitov. Khimiya, M. (1978). 312 p. (in Russian)
- M.V. Perfilyev, A.K. Demin, B.L. Kuzin, A.S. Lipilin. Vysokotemperaturny elektroliz gazov. / Edited by S.V. Karpachev. Nauka, M. (1988). 232 p. (in Russian)
- V.N. Chebotin. Khimicheskaya diffuziya v tverdykh telakh. Nauka, M. (1989). 208 p. (in Russian)
- H.L. Tuller, M. Balkanski, T. Takahashi. Solid State Ionics. Elsevier, Amsterdam (1992). 345 p
- A.K. Ivanov-Shitz, I.L. Murin. Ionika tverdogo tela. SPbSU, SPb (2000). T. 1. 617 p. (in Russian)
- S.C. Singhal, K. Kendall. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier, Amsterdam (2003). 429 p
- J. Maier. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids. Wiley, N. Y. (2004). 539 p
- A.K. Ivanov-Shitz, I.L. Murin. Ionika tverdogo tela. SPbSU, SPb (2000). T. 2. 1000 p. (in Russian)
- F. Ramadhani, M.A. Hussain, H. Mokhlis, S. Hajimolana. Renew. Sustain. Energy Rev. 76, (2017). P. 460. DOI: 10.1016/j.rser.2017.03.052
- T. Liu, X. Zhang, X. Wang, J. Yu, L. Li. Ionics 22, 12, 2249 (2016). DOI: 10.1007/s11581-016-1880-1
- S.N. Shkerin. Izv. AN. Ser. fiz. 66, 6, 890 (2002) (in Russian)
- S. Shkerin. The YSZ Electrolyte Surface Layer: Existence, Properties and Effect on Electrode Characteristics. In: N.M. Sammes, A. Smirnova, O. Vasylyev. Fuel Cell Technologies: State and Perspectives. Springer, Dordrecht (2005). P. 301-306. DOI: 10.1007/1-4020-3498-9_34
- V. Ivanov, S. Shkerin, A. Rempel, V. Khrustov, A. Lipilin, A. Nikonov. J. Nanosci. Nanotechnol. 10, 11, 7411 (2010). DOI: 10.1166/jnn.2010.2836
- V. Ivanov, S. Shkerin, A. Rempel, V. Khrustov, A. Lipilin, A. Nikonov. Dokl. RAN 433, 2, 206 (2010). (in Russian)
- A.N. Vlasov. Elektrokhimiya 25, 5, 699 (1989) (in Russian)
- A.N. Vlasov. Elektrokhimiya 25, 10, 1313 (1989) (in Russian)
- A.N. Vlasov, I.G. Shulik. Elektrokhimiya 26, 7, 909 (1990). (in Russian)
- A.N. Vlasov. Elektrokhimiya 19, 2, 1624 (1983)
- A.N. Vlasov, M.V. Inozemtsev. Elektrokhimiya 21, 6, 764 (1985)
- A.N. Vlasov, M.V. Perfiliev. Solid State Ionics 25, 4, 245 (1987)
- A.N. Vlasov. Elektrokhimiya 27, 11, 1479 (1991)
- M.A. Borik, A.V. Kulebyakin, I.E. Kuritsyna, E.E. Lomonova, V.A. Myzina, P.A. Popov, F.O. Milovich, N.Yu. Tabachkova. FTT 61, 12, 2390 (2019). (in Russian). DOI: 10.21883/FTT.2019.12.48560.08ks
- D.A. Agarkov, M.A. Borik, G.M. Korableva, A.V. Kulebyakin, I.E. Kuritsyna, E.E. Lomonova, F.O. Milovich, V.A. Myzina, P.A. Popov, P.A. Ryabochkina, N.Y. Tabachkova. FTT 62, 12, 2093 (2020) (in Russian). DOI: 10.21883/FTT.2020.12.50213.160, translated version: 10.1134/S1063783420120021
- Z. Wang, Z.Q. Chen, J. Zhu, S.J. Wang, X. Guo. Radiation Phys. Chem. 58, 5-6, 697 (2000). DOI: 10.1016/S0969-806X(00)00242-5
- V.G. Keramidas, W.B. White. J. Chem. Phys. 59, 3, 1561 (1973). DOI: 10.1063/1.1680227
- E.E. Lomonova, D.A. Agarkov, M.A. Borik, G.M. Yeliseeva, A.V. Kulebyakin, I.E. Kuritsyna, F.O. Milovich, V.A. Myzina, V.V. Osiko, A.S. Chislov, N.Yu. Tabachkova. Elektrokhimiya 56, 2, 127 (2020). (in Russian). DOI: 10.31857/S0424857020020085
- D.A. Long. The Raman effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley \& Sons Ltd, New Jersey (2002). 597 p. DOI: 10.1002/jrs.987
- S.N. Shkerin, E.S. Yulyanova, E.G. Vovkotrub. Neorgan. materialy 57, 11, 1213 (2021). DOI: 10.31857/S0002337X21100134
- S.H. Batygov, V.I. Vashchenko, S.V. Kudryavtsev, I.M. Klimkovich, E.E. Lomonova. FTT 30, 3, 661 (1988). (in Russian)
- N.G. Petrik, D.P. Taylor, T.M. Orlando. J. Appl. Phys. 85, 9, 6770 (1999). DOI: 10.1063/1.370192
- J.-M. Costantini, F. Beuneu, M. Fasoli, A. Galli, A. Vedda, M. Martini. J. Phys.: Condens. Matter. 23, 11, 115901 (2011). DOI: 10.1088/0953-8984/23/11/115901
- W.S.C. de Sousa, D.M.A. Melo, J.E.C. da Silva, R.S. Nasar, M.C. Nasar, J.A. Varela. Cer\^amica 53, 325, 99 (2007). DOI: 10.1590/S0366-69132007000100015
- K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, J. Grabis, W. Lojkowski. J. Luminescence 131, 10, 2058 (2011). DOI: 10.1016/j.jlumin.2011.05.018
- L. Dunyushkina, A. Pavlovich, A. Khaliullina. Mater. 14, 18, 5463 (2021). DOI: 10.3390/ma14185463
- S.N. Shkerin, E.S. Yulyanova, E.G. Vovkotrub. FTT 64, 4, 467 (2022). DOI: 10.21883/FTT.2022.04.52187.252
- S. Stepanov, O. Khasanov, E. Dvilis, V. Paygin, D. Valiev, M. Ferrari. Ceram. Int. 47, 5, 6608 (2021). DOI: 10.1016/j.ceramint.2020.10.250
- R. Khabibrakhmanov, A. Shurukhina, A. Rudakova, D. Barinov, V. Ryabchuk, A. Emeline, G. Kataeva, N. Serpone. Chem. Phys. Lett. 742, 137136 (2020). DOI: 10.1016/j.cplett.2020.137136
- N.C. Horti, M.D. Kamatagi, S.K. Nataraj, M.S. Sannaikar, S.R. Inamdar. AIP Conf. Proceed. 2274, 1, 020002 (2020). DOI: 10.1063/5.0022460
- X. Tan, S. Xu, L. Zhang, F. Li, B.A. Goodma, W. Deng. Appl. Phys. A 124, 12, 853 (2018). DOI: 10.1007/s00339-018-2284-z
- K. Smits, D. Olsteins, A. Zolotarjovs, K. Laganovska, D. Millers, R. Ignatans, J. Grabis. Sci. Rep. 7, 44453 (2017). DOI: 10.1038/srep44453
- K. Smits, L. Grigorjeva, D. Millers, K. Kundzins, R. Ignatans, J. Grabis, C. Monty. Opt. Mater. 37, 251 (2014). DOI: 10.1016/j.optmat.2014.06.003
- K. Smits, D. Jankovic, A. Sarakovskis, D. Millers. Opt. Mater. 35, 3, 462 (2013). DOI: 10.1016/j.optmat.2012.09.038
- L.A. Diaz-Torres, O. Meza, D. Solis, P. Salas, E. De la Rosa. Opt. Lasers Eng. 49, 6, 703 (2011). DOI: 10.1016/j.optlaseng.2010.12.010
- K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, A. Opalinska, J.D. Fidelus, W. Lojkowski. Opt. Mater. 32, 8, 827 (2010). DOI: 10.1016/j.optmat.2010.03.002
- K. Utt, S. Lange, M. Jarvekulg, H. Mandar, P. Kanarjov, I. Sildos. Opt. Mater. 32, 8, 823 (2010). DOI: 10.1016/j.optmat.2010.02.016
- L.A. Diaz-Torres, E. De la Rosa-Cruz, P. Salas, C. Angeles-Chavez. J. Phys. D 37, 18, 2489 (2004). DOI: 10.1088/0022-3727/37/18/004
- V.B. Glushakova, M.V. Kravchinskaya, A.K. Kuznetsov, P.A. Tikhonov. Dioksid gafniya i ego soedineniya s oksidami redkozemelnykh elementov. Nauka, L. (1984). 174 p. (in Russian)
- S.V. Zhidovinova, A.G. Kotlyar, V.N. Strekalovsky, S.F. Palguev. Tr. In-ta of Electrochemistry of the UNC of the USSR Academy of Sciences 18, 148 (1972)
- M.F. Trubelja, V.S. Stubican. Solid State Ionics 49, 89 (1991)
- A.N. Meshcherskikh, A.A. Kolchugin, B.D. Antonov, L.A. Dunyushkina. FTT 62, 1, 145 (2020). (in Russian). DOI: 10.21883/FTT.2020.01.48752.557 [A.N. Meshcherskikh translated version: DOI:10.1134/S1063783420010229]
- S.N. Shkerin, M.V. Perfilyev. Elektrokhimiya 26, 11, 1461 (1990)
- M. Alotaibi, L. Li, A.R. West. Phys. Chem. Chem. Phys. 23, 45, 25951 (2021). DOI: 10.1039/d1cp04642j
- T. Ito, M. Maeda, K. Nakamura, H. Kato, Y. Ohki. J. Appl. Phys. 97, 5, 054104 (2005). DOI: 10.1063/1.1856220
- M. Villanueva-Ibaez, C. Le Luyer, C. Dujardin, J. Mugnier. Mater. Sci. Eng. B105, 1-3, 12 (2003). DOI: 10.1016/j.mseb.2003.08.006
- L. Mariscal-Becerra, M.C. Flores-Jimenez, M. Hernandez-Alcantara, E. Camarillo, C. Falcony-Guajardo, R. Vazquez-Arregui n, H. Murrieta Sanchez. J. Nanophotonics 12, 3, 036013 (2018). DOI: 10.1117/1.JNP.12.036013
- Yu.K. Voronko, B.I. Denker, V.V. Osiko. FTT 13, 8, 2193 (1971). (in Russian)
- W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana. J. Chem. Phys. 90, 7, 3443 (1989). DOI: 10.1063/1.455853
- J.C.G. Bunzli, C. Piguet. Chem. Soc. Rev. 34, 12, 1048 (2005). DOI: 10.1039/B406082M
- A. Ciric, S. Stojadinovic. J. Lumin. 26, 17, 116762 (2020). DOI: 10.1016/j.jlumin.2019.116762
- A. Konrad, U. Herr, R. Tidecks, F. Kummer, K. Samwer. J. Appl. Phys. 90, 7, 3516 (2001). DOI: 10.1063/1.1388022
- O. Kalantaryan, V.N. Karazin, V. Zhurenko, S. Kononenko, R. Skiba, V. Chishkala, M. Azarenkov. 2020 IEEE 10th Int. Conf. Nanomater.: Applications \& Properties (NAP) P. 01NP03 (2020). DOI: 10.1109/NAP51477.2020
- V.I. Solomonov, V.V. Osipov, V.A. Shitov, K.E. Lukyashin, A.S. Bubnova. Optika i spektroskopiya 128, 1, 5 (2020). (in Russian). DOI: 10.21883/OS.2020.01.48831.117-19
- L. Li, X. Zhang, X. Wei, G. Wang, C. Guo. J. Nanosci. Nanotechnol. 14, 6, 4313 (2014). DOI: 10.1166/jnn.2014.8049
- L.Q. An, J. Zhang, M. Liu, S.W. Wang. Key Eng. Mater. 280-283, 28, 521 (2005). DOI: 10.4028/www.scientific.net/KEM.280-283.521
- N.A. Safronova, R.P. Yavetskiy, O.S. Kryzhanovska, S.V. Parkhomenko, A.G. Doroshenko, M.V. Dobrotvorska, A.V. Tolmachev, R. Boulesteix, A. Maitre, T. Zorenko, Yu. Zorenko. Opt. Mater. 101, 109730 (2020). DOI: 10.1016/j.optmat.2020.109730
- Y. Yu, Y. Huang, L. Zhang, Z. Lin, G. Wang. PLoS ONE 8, 1, e54450 (2013). DOI: 10.1371/journal.pone.0054450
- S. Nishimura, S. Fuchi, Y. Takeda. J. Mater. Sci.: Mater. Electron. 26, 8, 10, 7157 (2017). DOI: 10.1007/s10854-017-6699-7
- S. Nishimura, Y. Nanai, S. Koh, S. Fuchi. J. Mater. Sci: Mater. Electron. 32, 11, 14813 (2021). DOI: 10.1007/s10854-021-06035-w
- K. Bhargavi, M.S. Rao, N. Veeraiah, B. Sanyal, Y. Gandhi, G.S. Baskaran. Int. J. Appl. Glass Sci. 6, 2, 128 (2014). DOI: 10.1111/ijag.12100
- X. Tan, S. Xu, L. Zhang, F. Liu, B.A. Goodman, W. Deng. Appl. Phys. A 124, 12, 853 (2018). DOI: 10.1007/s00339-018-2284-z
- T. Kallel, M.A. Hassairi, M. Dammak, A. Lyberis, P. Gredin, M. Mortier. J. Alloys. Compounds 584, 261 (2014). DOI: 10.1016/j.jallcom.2013.09.057
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.