Physics of the Solid State
Volumes and Issues
Structural and spectral characteristics of La0.99-xTbxEu0.01BO3 orthoborates and energy transfer from Tb3+ to Eu3+
Shmurak S. Z. 1, Kedrov V.V. 1, Kiselev A.P. 1, Fursova T.N. 1, Zver'kova I.I. 1
1Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
Email: shmurak@issp.ac.ru, kedr@issp.ac.ru, kiselev@issp.ac.ru, fursova@issp.ac.ru, zverkova@issp.ac.ru

PDF
The structure, infrared (IR) absorption spectra, luminescence spectra (SL), and luminescence excitation spectra (LES) of La0.99-xTbxEu0.01BO3 orthoborates synthesized at 970oC at 0≤ x≤ 0.99 were studied. An increase in x leads to the successive emergence of three structural states of these compounds. At 0≤ x≤0.2, orthoborates have an aragonite structure; then, at 0.2<x <0.89, they become two-phase and contain the aragonite and vaterite phases. At 0.89≤ x≤ 0.99, the compounds have a vaterite structure. A correspondence between the structure and spectral characteristics of these compounds was established. It is shown that in La0.99-xTbxEu0.01BO3 orthoborates, as well as in La0.99-xYxEu0.01BO3, the band with λex=369 nm (7F0->5D2) in the LES and the band in the wavelength range of 577-582 nm (5D0->7F0) in the SL of these compounds can serve as indicators of the structural state of the sample. In the SL of the samples containing the aragonite and vaterite phases, two bands corresponding to these structures were simultaneously observed for the first time. It was established that the luminescence of Eu3+ ions in La0.99-xTbxEu0.01BO3 orthoborates, which occurs when the sample is excited by light in the absorption bands of Tb3+ ions, is due to the transfer of the electron excitation energy from Tb3+ ions to Eu3+ ions. The efficiency of this process in La0.9Tb0.09Eu0.01BO3 samples with an aragonite structure is 86%. Keywords: rare earth orthoborates, crystal structure, X-ray diffraction analysis, IR spectroscopy, luminescence spectra, phosphors for LEDs.
  1. M. Balcerzyk, Z. Gontarz, M. Moszynski, M. Kapusta. J. Lumin. 87-89, 963 (2000)
  2. V.V. Mikhailin, D.A. Spassky, V.N. Kolobanov, A.A. Meotishvili, D.G. Permenov, B.I. Zadneprovski. Rad. Meas. 45, 307 (2010)
  3. G. Blasse, B.C. Grabmaier. Luminescent Materials. Berlin--Heiderberg, Springer--Verlag (1994). 233 p
  4. C. Mansuy, J.M. Nedelec, C. Dujardin, R. Mahiou. Opt. Mater. 29, 6, 697 (2007)
  5. Jun Yang, Chunxia Li, Xiaoming Zhang, Zewei Quan, Cuimiao Zhang, Huaiyong Li, Jun Lin. Chem. Eur. J. 14, 14, 4336 (2008)
  6. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, I.I. Zver'kova. FTT 62, 12, 2110 (2020). (in Russian)
  7. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, I.I. Zver'kova, E.Yu. Postnova. FTT 63, 10, 1617 (2021). (in Russian)
  8. J. Yang, G. Zhang, L. Wang, Z. You, S. Huang, H. Lian, J. Lin. J. Solid State Chem. 181, 12, 2672 (2008)
  9. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, I.M. Shmyt'ko. FTT 57, 8, 1558 (2015). (in Russian)
  10. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, I.I. Zver'kova. FTT 64, 1, 105 (2022). (in Russian)
  11. E. Nakazawa, S. Shianoya. J. Chem. Phys. 47, 3211 (1967)
  12. B. Di Bartolo, G. Armagan, M. Buoncristiani. Opt. Mater. 4, 1, 11 (1994)
  13. M. Inokuti, F. Yirayama. J. Chem. Phys. 43, 6, 1978 (1965)
  14. V.M. Agranovich, M.D. Galanin. Perenos energii elektronnogo vozbuzhdeniya v kondensirovannykh sredakh. Nauka, M. (1978). 383 p. (in Russian)
  15. I.A. Bondar, A.I. Burstein, A.V. Krutikov, L.M. Mezentseva, V.V. Osiko, V.P. Sakun, V.A. Smirnov, I.A. Shcherbakov. ZhETF 81, 96 (1981). (in Russian)
  16. S.K. Sekatskiy, V.S. Letokhov. Pis'ma v ZhETF 63, 5, 311 (1996). (in Russian)
  17. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, I.M. Shmyt'ko. FTT 58, 3, 564 (2016). (in Russian)
  18. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, O.G. Rybchenko. FTT 59, 6, 1150 (2017). (in Russian)
  19. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, O.G. Rybchenko. FTT 61, 1, 123 (2019). (in Russian)
  20. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, I.I. Zver'kova, S.S. Khasanov. FTT 62, 11, 1888 (2020). (in Russian)
  21. Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mu, G. Ju, Z. Yang. Physica B 436, 105 (2014)
  22. Z.J. Hang, H.H. Chen, X.X. Yang, J.T. Zhao. Mater. Sci. Eng. B 145, 1-3, 34 (2007)
  23. W.W. Holloway, M. Kestigian, R. Newman. Phys. Rev. Lett. 11, 10, 458 (1963)
  24. J. Yang, G. Li, C. Peng, C. Li, C. Zhang, Y. Fan, Z. Xu, Z. Cheng, J. Lin. J. Solid State Chem. 183, 2, 451 (2010)
  25. G. Garsia-Rosales, F. Mersier-Bion, R. Drot, G. Lagarde, J. Rogues, E. Simoni. J. Lumin. 132, 5, 1299 (2012)
  26. X. Zhang, Z. Zhao, X. Zhang, A. Marathe, D.B. Cordes, B. Weeks, J. Chaudhuri. J. Mater. Chem. C, 1, 43, 7202 (2013)
  27. J. Thakur, D.P. Dutta, H. Bagla, A.K. Tyagi. J. Am. Ceram. Soc. 95, 2, 696 (2012)
  28. Heng-Wei Wei, Li-Ming Shao, Huan Jiao, Xi-Ping Jing. Opt. Mater. 75, 442 (2018)
  29. J. Holsa. Inorg. Chim. Acta 139, 1-2, 257 (1987)
  30. G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, C. Cousseins. J. Solid State Chem. 128, 261 (1997)
  31. R.S. Roth, J.L. Waring, E.M. Levin. Proc. 3rd. Conf. Rare Earth Res. Clearwater, Fla. (1964). P. 153
  32. E.M. Levin, R.S. Roth, J.B. Martin. Am. Miner. 46, 9-10, 1030 (1961)
  33. C. Badan, O. Esenturk, A. Yelmaz. Solid State Sci. 14, 11-12, 1710 (2012)
  34. I.M. Shmyt'ko, I.N. Kiryakin, G.K. Strukova. FTT 55, 7, 1369 (2013). (in Russian)
  35. N.I. Steblevskaya, M.I. Belobeletskaya, M.A. Medkov. Zhurn. neorgan. khimii 66, 4, 440 (2021). (in Russian)
  36. Ling Li, Shihong Zhou, Siyuan Zhang. Solid State Sci. 10, 1173 (2008)
  37. A. Szczeszak, T. Grzyb, St. Lis, R.J. Wiglusz. Dalton Transactions 41, 5824 (2012)
  38. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, I.I. Zver'kova, S.S. Khasanov. FTT 63, 12, 2142 (2021). (in Russian)
  39. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, I.I. Zver'kova. FTT 64, 4, 474 (2022). (in Russian)
  40. A. Haberer, R. Kaindl, H. Huppertz. Z. Naturforsch. B 65, 1206 (2010)
  41. R. Velchuri, B.V. Kumar, V.R. Devi, G. Prasad, D.J. Prakash, M. Vital. Mater. Res. Bull. 46, 8, 1219 (2011)
  42. Jin Teng-Teng, Zhang Zhi-Jun, Zhang Hui, Zhao Jing-Tai. J. Inorganic Mater. 28, 10, 1153 (2013)
  43. S.Z. Shmurak, V.V. Kedrov, A.P. Kiselev, T.N. Fursova, I.I. Zver'kova. FTT 64, 8, 955 (2022). (in Russian)
  44. A.G. Ryabukhin. Izv. Chelyabinskogo nauch. tsentra 4, 33 (2000). (in Russian)
  45. C.E. Weir, E.R. Lippincott. J. Res. Natl. Bur. Std. A 65A, 3, 173 (1961)
  46. W.C. Steele, J.C. Decius. J. Chem. Phys. 25, 6, 1184 (1956)
  47. J.P. Laperches, P. Tarte. Spectrochim. Acta 22, 1201 (1966)
  48. J.H. Denning,S.D. Ross. Spectrochim. Acta 28A, 1775 (1972)
  49. Guang Jia, Cuimiao Zhang, Chunzheng Wang, Lei Liu, Cuimiao Huang, Shiwen Ding. Cryst. Eng. Commun. 14, 579 (2012)
  50. Guang Jia, Jing-Yi Liu, Dong-Bing Dong, Cui-Miao Zhang. Adv. Mater. Res. 1052, 193 (2014).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru