Features of the formation of radiation spectra of two-particle nanosystems in a magnetic field
Kucherenko M.G.
1, Nalbandyan V. M.
1, Chmereva T. M.
11Center of Laser and Information Biophysics, Orenburg State University, Orenburg, Russia
Email: clibph@yandex.ru, nalband1@yandex.ru
A spectral model of luminescence of the two-component exciton-activated semiconductor quantum dot (QD) layered plasmon composite nanoparticle (CNP) with a dielectric core and a conductive shell in an external magnetic field is constructed, taking into account the inhomogeneity of the quasi-stationary electric field generated by QD in the CNP region, outside the framework of the approximation of the dipole polarizability of the CNP. The tensor formalism of describing the characteristics of the field in each of the layers of the CNP, as well as outside the CNP, is used. It is established that with a change in the structure of the nanocomposite, the parameters of its core or shell layer, the spectral response of the system to external magnetic field action changes. It is shown that the special form of the response is associated with the characteristic magnetic properties of the nanoparticle components acquired (under the action of the field). Keywords: plasma layered nanoparticle, spherical quantum dot, magnetic field, luminescence of a two-particle complex.
- V.I. Balykin, P.N. Melentiev. Phys. Usp., 61, 133 (2018). DOI: 10.3367/UFNe.2017.06.038163
- S.I. Lepeshov, A.E. Krasnok, P.A. Belov, A.E. Miroshnichenko. Phys. Usp., 61, 1035 (2018). DOI: 10.3367/UFNe.2017.12.038275
- E. Cao, Lin W., M. Sun, W. Liang, Y. Song. Nanophotonics, 7 (1), 145 (2018). DOI: 10.1515/nanoph-2017-0059
- A.P. Litvin, I.V. Martynenko, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun'ko. J. Mater. Chem. A, 5 (26), 13252 (2017). DOI: 10.1039/C7TA02076G
- S. Yan, X. Zhu, J. Dong, Y. Ding, S. Xiao. Nanophotonics, 9 (7), 1877 (2020). DOI: 10.1515/nanoph-2020-0074
- M. Achermann. J. Phys. Chem. Lett., 1, 2837. DOI: 10.1021/JZ101102E
- E. Cohen-Hoshen, G.W. Bryant, I. Pinkas, J. Sperling, I. Bar-Joseph. Nano Letters, 12 (8), 4260 (2012). DOI: 10.1021/nl301917d
- J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, H. Xu. ACS Nano, 12 (10), 10393 (2018). DOI: 10.1021/acsnano.8b05880
- T.J. Antosiewicz, S.P. Apell, T. Shegai. ACS Photonics, 1 (5), 454 (2014). DOI: 10.1021/ph500032d
- O. Bitton, S.N. Gupta, G. Haran. Nanophotonics, 8 (4), 559 (2019). DOI: 10.1515/nanoph-2018-0218
- M.G. Kucherenko, V.M. Nalbandyan, T.M. Chmereva. J. Opt. Technol., 88 (9), 489 (2021). DOI: 10.1364/JOT.88.000489
- M.G. Kucherenko, V.M. Nalbandyan. Opt. Spectrosc., 128 (11), 1910 (2020). DOI: 10.1134/S0030400X20110156
- P. Rajput, M.S. Shishodia Plasmonics., 15 (6), 2081 (2020). DOI: 10.1007/s11468-020-01208-5
- H. Yanagawa, A. Inoue, H. Sugimoto, M. Shioi, M. Fujii. J. Appl. Phys., 122, 223101 (2017). DOI: 10.1063/1.5001106
- D.V. Guzatov, S.V. Gaponenko. Doklady Nats. akad. nauk Belarusi, 63 (6), 689 (2020) (in Russian). DOI: 10.29235/1561-8323-2019-63-6-689-694
- A.K. Tobias, M. Jones. The J. Phys. Chem. C, 123 (2), 1389 (2018). DOI: 10.1021/acs.jpcc.8b09108
- M.G. Kucherenko, V.M. Nalbandyan. Vestnik OGU, 188 (13), 156 (2015) (in Russian)
- M.G. Kucherenko, V.M. Nalbandyan. Russian Physics J., 59 (9), 1425 (2017). DOI: 10.1007/s11182-017-0926-9
- A.V. Korotun, A.A. Koval. Opt. i spektr., 127 (12), 1032 (2019) (in Russian). DOI: 10.21883/OS.2019.12.48705.133-19
- A.V. Korotun, V.V. Pogosov. FTT, 63 (1), 120 (2021) (in Russian). DOI: 10.21883/FTT.2021.01.50409.178
- P. Li, K. Du, F. Lu, K. Gao, F. Xiao, W. Zhang, T. Mei. J. Phys. Chem. C, 124 (35), 19252 (2020). DOI: 10.1021/acs.jpcc.0c05661
- I.Y. Goliney, V.I. Sugakov, L. Valkunas, G.V. Vertsimakha. Chem. Phys., 404, 116 (2012). DOI: 10.1016/j.chemphys.2012.03.011
- K. Sakai, K. Nomura, T. Yamamoto, K. Sasaki. Scientific Reports, 5 (1), 1 (2015). DOI: 10.1038/srep08431
- Z.W. Ma, J.P. Zhang, X. Wang, Y. Yu, J.B. Han, G.H. Du, L. Li. Optics Letter, 38 (19), 3754 (2013). DOI: 10.1364/OL.38.003754
- C.M. Briskina, A.P. Tarasov, V.M. Markushev, M.A. Shiryaev. J. Nanophotonics. 12 (4), 043506 (2018). DOI: 10.1117/1.JNP.12.043506
- Ch.M. Briskina, A.P. Tarasov, V.M. Markushev, M.A. Shiryaev. Zhurn. priklad. spektrosk., 85 (6), 1018 (2018) (in Russian)
- M.G. Kucherenko, V.M. Nalbandyan. Physics Procedia, 73, 136 (2015). DOI: 10.1016/j.phpro.2015.09.134
- V.L. Ginzburg, A.A. Rukhadze. Volny v magnitoaktivnoy plazme (Nauka, M., 1975) (in Russian)
- M.G. Kucherenko, V.M. Nalbandyan. J. Opt. Technol., 85 (9), 524 (2018). DOI: 10.1364/JOT.85.000524
- D.A. Varshalovich, B.K. Khersonskiy, E.V. Orlenko, A.N. Moskalev. Kvantovaya teoriya uglovogo momenta i ee prilozheniya. V. 1 (Fizmatlit, M., 2017) (in Russian)
- V.M. Agranovich, D.M. Basko. Pis'ma v ZhETF, 69 (3), 232 (1999) (in Russian)
- M.G. Kucherenko, I.R. Alimbekov, P.P. Neyasov. Khim. fizika i mezoskopiya, 23 (3), 272 (2021) (in Russian). DOI: 10.15350/17270529.2021.3.25
- V.V. Klimov. Nanoplazmonika (Fizmatlit, M., 2009) (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.