Changes in the ferromagnetic resonance and magnetic anisotropy spectra of multilayer heterostructures [CoFeB/SiO2|Bi2Te3]47 when applying Fe/Fe3O4 nanoparticles to their surface
Bezverkhny A. I.1,2, Morgunov R. B.1,2
1Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: morgunov2005@yandex.ru
The ferromagnetic resonance method revealed an increase in the anisotropy constant of the heterostructure [CoFeB/SiO2|Bi2Te3]47 under the action of magnetic Fe/Fe3O4 nanoparticles deposited on the surface of the heterostructure by 20%. It has been established that a layer of Fe/Fe3O4 nanoparticles ~27 nm thick on a GaAs diamagnetic substrate has its own magnetic anisotropy caused by the magnetic dipole interaction between the particles. A layer of nanoparticles bound by magnetic dipole interaction forms an equivalent magnetic film, the scattering field of which changes the effective magnetic anisotropy of the heterostructure CoFeB/SiO2|Bi2Te3]47. Keywords: ferromagnetic resonance, magnetic anisotropy, multilayer heterostructures, magnetic dipole interaction, nanoparticles.
- I. Koh, L. Josephson. Sensors 9, 10, 8130 (2009)
- V. Fernandes Cardoso, A. Francesko, C. Ribeiro, M. Ban obre-Lopez, P. Martins, S. Lanceros-Mendez. Adv. Healthcare Mater. 7, 5, 1700845 (2017)
- A. Vande Walle, J.E. Perez, A. Abou-Hassan, M. Hemadi, N. Luciani, C. Wilhelm. Mater. Today Nano 11, 100084 (2020)
- S. Ikeda, J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, H. Ohno. Appl. Phys. Lett. 93, 8, 082508 (2008)
- R.B. Morgunov, G.L. L'vova, A.D. Talantsev, Y. Lu, X. Devaux, S. Migot, O.V. Koplak, O.S. Dmitriev, S. Mangin. Thin Solid Films 640, 8 (2017)
- R.B. Morgunov, O.V. Koplak, R.S. Allayarov, E.I. Kunitsyna, S. Mangin. Appl. Surf. Sci. 527, 146836 (2020)
- E.I. Kunitsyna, R.S. Allayarov, O.V. Koplak, R.B. Morgunov, S. Mangin. ACS Sens. 6, 12, 4315 (2021)
- O.V. Dunets, Yu.E. Kalinin, M.A. Kashirin, A.V. Sitnikov. ZhTF 83, 9, 114 (2013) (in Russian)
- E.N. Kablov, O.G. Ospennikova, V.P. Piskorsky, D.V. Korolev, Yu.E. Kalinin, A.V. Sitnikov, E.I. Kunitsyna, A.D. Talantsev, V.L. Berdinsky, R.B. Morgunov. FTT 58, 6, 1086 (2016) (in Russian)
- E.P. Domashevskaya, N.A. Builov, V.A. Terekhov, K.A. Barkov, V.G. Sitnikov. FTT 59, 1, 161 (2017) (in Russian)
- O.V. Gerashchenko, V.A. Ukleyev, E.A. Dyadkina, A.V. Sitnikov, Yu.E. Kalinin. FTT 59, 1, 157 (2017) (in Russian)
- V.V. Rylkov, S.N. Nikolaev, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, K.E. Nikiruy, V.A. Levanov, M.Yu. Presnyakov, A.N. Taldenkov, A.L. Vasiliev, K.Yu. Chernoglazov, A.S. Vedeneev, Yu.E. Kalinin, A.B. Granovsky, V.V. Tugushev, A.S. Bugaev. J. Exp. Theor. Phys. 126, 3, 353 (2018)
- K.E. Nikiruy, A.V. Yemelyanov, V.A. Demin, V.V. Rylkov, A.V. Sitnikov, P.K. Kashkarov. Pis'ma v ZhTF 44, 10, 20 (2018) (in Russian)
- H. Al Azzawi, Yu. Kalinin, A. Sitnikov, O. Tarasova. Solid State Phenomena 233- 234, 467 (2015)
- V. Ukleev, E. Dyadkina, A. Vorobiev, O.V. Gerashchenko, L. Carond, A.V. Sitnikov. J. Non-Cryst. Solids 432, 499 (2016)
- P.V. Finotelli, M.A. Morales, M.H. Rocha-Leao, E.M. Baggio-Saitovitch, A.M. Rossi. Mater. Sci. Eng. C 24, 5, 625 (2004)
- C. Kittel. Phys. Rev. 73, 2, 155 (1948)
- G.S. Shahane, K.V. Zipare, R.P. Pant. Magnetohydrodynamics 49, 3-4, 317 (2013)
- A. Matsumoto, T. Sugiura, M. Kobashi, S. Yamamoto. Mater. Transact. 61, 7, 1404 (2020)
- E. LimaJr, A.L. Brandl, A.D. Arelaro, G.F. Goya. J. Appl. Phys. 99, 8, 083908 (2006)
- A.I. Bezverkhniy, A.D. Talantsev, Yu.E. Kalinin, A.V. Sitnikov, V.A. Nikitenko, O.V. Koplak, O.S. Dmitriyev, R.B. Morgunov. FTT 61, 2, 266 (2019) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.