Features of vacuum resonant tunneling at one-and two-well barrier potentials
M. V. Davidovich1
1Saratov State University, Saratov, Russia
Email: davidovichmv@info.sgu.ru

PDF
The features of one-dimensional vacuum tunneling and calculation of the tunneling current in barrier quantum structures with one and two wells are considered. The structures are formed by several electrodes: the cathode, the anode and two grids. The potential profiles are constructed by the method of multiple images. Equations for eigenvalues and metastable levels of a structure with an arbitrary potential profile are found. For full resonant tunneling, the metastable levels must fall into the region of the electron kinetic energy distribution at the cathode, which occurs in single-well structures in the absence of an anode voltage or at a low anode voltage compared to the voltage on the grids. A significant voltage at the anode leads to an asymmetric structure and incomplete resonant tunneling. In this case, a two-well structure with a double grid allows obtaining full resonant tunneling for a number of energies and increasing the tunneling current by orders of magnitude. Keywords: resonant tunneling, field emission, vacuum nanotriode, potential barrier, quantum well.
  1. K.S. Grishakov, V.F. Elesin. Semiconductors, 50 (8), 1092 (2016). DOI: 10.1134/S1063782616080121
  2. V.F. Elesin. ZhETF, 145 (6), 1078 (2014) (in Russian) [V.F. Elesin. JETP, 118 (6), 951 (2014). DOI: 10.1134/S1063776114060041]
  3. V.F. Elesin, B.V. Kopaev. JETP, 96 (6), 1149 (2003). DOI: 10.1134/1.1591227
  4. V.F. Elesin, I.Yu. Kateev, M.A. Remnev. Semiconductors, 43, 257 (2009). DOI: 10.1134/S1063782609020250
  5. V.F. Elesin, I.Yu. Kateev. Semiconductors, 39 (9), 1071 (2005). DOI: 10.1134/1.2042601
  6. M.V. Davidovich. JETP Lett., 110 (7), 472 (2019). DOI: 10.1134/S0021364019190068
  7. D.I. Trubetskov, A.G. Rozhnev, D.V. Sokolov. Lektsii po sverkhvysokochastotnoy vakuumnoy mikroelektronike (GosUNTs "Kolledzh", Saratov, 1996) (in Russian)
  8. C. Bower, D. Shalom, W. Zhu, D.l. Lopez, G.P. Kochanski, P.L. Gammel, S. Jin. IEEE Trans. ED, 49 (8), 1478 (2002). DOI: 10.1109/TED.2002.801247
  9. R. Riccitelli, F. Brunetti, C. Paoloni, G. Ulisse, A. Di Carlo, V. Krozer. IEEE International Vacuum Electronics Conference (Monterey, IEEE Publisher, USA, 2008), p. 382-383. DOI: 10.1109/IVELEC.2008.4556544
  10. J.W. Gadzuk. Surf. Sci., 15, 466 (1969). DOI: 10.1016/0039-6028(69)90135-6
  11. M.B. Partenskii. Sov. Phys. Usp., 22, 330 (1979). DOI: 10.1070/PU1979v022n05ABEH005498
  12. C. Berthod, T. Giamarchi. Phys. Rev. B, 84, 155414 (2011). DOI: 10.1103/PhysRevB.84.155414
  13. T.N. Todorov, G.A.D. Briggs, A.P. Sutton. J. Phys. Condens. Matter, 5, 2389 (1993)
  14. W. Wang, Z. Lia. J. Appl. Phys., 109 (11), 114308 (2011). DOI: 10.1063/1.3587186
  15. D.I. Proskurovsky. Emissionnaya elektronika (Izd-vo TGU, Tomsk, 2010) (in Russian)
  16. G.N. Fursey. Field Emission in Vacuum Micro-Electronics (Kluwer Academic Plenum Publishers, Springer, NY., 2005)
  17. G.N. Furosey. Avtoelektronnaya emissiya (Lan', SPb, 2012) (in Russian)
  18. A.S. Davydov. Kvantovaya mekhanika (Nauka, M., 1973) (in Russian)
  19. E.A. Nelin. Phys. Usp., 50, 293 (2007). DOI: 10.1070/PU2007v050n03ABEH006091
  20. J.G. Simmons. J. Appl. Phys., 34 (6), 1793 (1963). DOI: 10.1063/1.1702682
  21. M.V. Davidovich, R.K. Yafarov. Tech. Phys., 63 (2), 274. DOI: 10.1134/S106378421802010X
  22. M.V. Davidovich, R.K. Yafarov. Tech. Phys., 64 (8), 1210. DOI: 10.1134/S106378421908005X
  23. M.V. Davidovich. J. Exp. Theor. Phys., 130, 35 (2020). DOI: 10.1134/S1063776119120161
  24. L.D. Landau, I.M. Lifshits. Kvantovaya mekhanika. Nerelyativistskaya teoriya (GIFML, M., 1963) (in Russian)
  25. M.V. Davidovich. Quant. Electron., 47 (6), 567 (2017). DOI: 10.1070/QEL16272
  26. M.V. Davidovich, I.S. Nefedov, O.E. Glukhova, M.M. Slepchenkov. J. Appl. Phys., 130, 204301 (2021). DOI: 10.1063/5.0067763
  27. T.E. Stern, B.S. Gossling, R.H. Fowler. Proc. R. Soc. Lond., A 124, 699 (1929). DOI: 10.1098/rspa.1929.0147
  28. J. Bardeen. Phys. Rev., 49 (9), 656 (1936). DOI: 10.1103/PhysRev.49.653
  29. T.L. Juretschke, Phys. Rev., 93 (5), 1140 (1953). DOI: 10.1103/PhysRev.92.1140
  30. G.F. Vasiliev. Radiotekhnika i elektronika, 5, (11) 1857, (1960) (in Russian)
  31. T.L. Loucks, P.H. Catler. J. Phys. Chem. Sol., 25 (1), 105 (1964). DOI: 10.1016/0022-3697(64)90166-0
  32. P.H. Cutler, J.J. Gibbons. Phys. Rev., 111 (2), 394 (1958). DOI: 10.1103/PhysRev.111.394
  33. G.G. Belford, A. Kuppermann, T.E. Phipps. Phys. Rev., 128 (2), 524 (1962). DOI: 10.1103/PhysRev.128.524
  34. A.I. Baz', Ya.B. Zel'dovich, A.M. Perelomov. Rasseyanie, reaktsii i raspady v nerelyativistskoy kvantovoy mekhanike (Nauka, M., 1971) (in Russian)
  35. F.I. Itskovich. ZhETF, 50 (5), 1425 (1966) (in Russian) [F.I. Itskovich. ZETF, 50 (5), 1425 (1966).]
  36. F.I. Itskovich. ZhETF, 52 (6), 1720 (1967) (in Russian) [F.I. Itskovich. ZETF 52 (6), 1720 (1967).]
  37. N.S. Xua, S. Ejaz Huqb. Mater. Sci. Engineer. R Reports, 48 (2), 47 (2005). DOI: 10.1016/j.mser.2004.12.001

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru