Influence of the intensity of exciting radiation on the luminescent properties of nanopowders NaYF4 : Yb/Tm
Burikov S.A.
1, Filippova E.A.
1, Fedyanina A.A.
1, Kuznetsov S.V.
2, Proydakova V. Yu.
2, Voronov V.V.
2, Dolenko T.A.
11Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: sergey.burikov@gmail.com, filippova.ea17@physics.msu.ru, fedyanechka@mail.ru, kouznetzovsv@gmail.com, vera.proydakova@gmail.com, voronov@lst.gpi.ru, tdolenko@mail.ru
Intensity of the bands of upconversion luminescence of β-NaYF4 : Yb3+/Tm3+ nanopowders in DMSO suspensions vs intensity of exciting radiation were analyzed. Ranges of changes in the intensity of excitation have been established, in which either the processes of energy transfer from the sensitizer ion to the activator ion or the decay of intermediate levels of activator ions dominate. Keywords: rare earth ions, upconversion luminescence, nanoparticle suspensions, sensitizer, activator.
- F. Auzel. J. Lumin., 223, 116900 (2020). DOI: 10.1016/j.jlumin.2019.116900
- Q. Liu. Studies of optical properties of lanthanide upconversion nanoparticles for emerging applications. Ph.D. Thesis (Sweden: KTH Royal Institute of Technology, Stockholm, 2020), pp. 73. URL: https://www.diva-portal.org/smash/ get/diva2:1429054/SUMMARY01.pdf
- S. Han, R. Deng, X. Xie, X. Liu. Angew. Chem. Int. Ed., 53, 11702 (2014). DOI: 10.1002/anie.201403408
- M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, F. Xu. Nanoscale, 7, 4423 (2015). DOI: 10.1039/c4nr06944g
- O.E. Sarmanova, S.A. Burikov, K.A. Laptinskiy, O.D. Kotova, E.A. Filippova, T.A. Dolenko. Spectrochim. Acta, Part A, 241, 118627 (2020). DOI: 10.1016/j.saa.2020.118627
- D. Pominova, V. Proydakova, I. Romanishkin, A. Ryabova, S. Kuznetsov, O. Uvarov, P. Fedorov, V. Loschenov. Nanomaterials, 10, 1992 (2020). DOI: 10.3390/nano10101992
- D. Jaque, F. Vetrone. Nanoscale, 4, 4301 (2012). DOI: 10.1039/C2NR30764B
- A. Shalav, B.S. Richards, M.A. Green. Sol. Energy Mater. Sol. Cells, 91, 829 (2007). DOI: 10.1016/j.solmat.2007.02.007
- A. Escudero, A.I. Becerro, C. Carrillo-Carrion, N.O. Nunez, M.V. Zyuzin, M. Laguna, D. Gonzalez-Mancebo, M. Ocana, W.J. Parak. Nanophotonics, 6, 881 (2017). DOI: 10.1515/nanoph-2017-0007
- S.A. Burikov, O.D. Kotova, O.E. Sarmanova, S.V. Kuznetsov, V.Y. Proydakova, V.V. Voronov, P.P. Fedorov, S.V. Patsaeva, T.A. Dolenko. JETP Lett., 111, 525 (2020). DOI: 10.1134/S0021364020090064
- D.V. Pominova, V.Y. Proydakova, I.D. Romanishkin, A.V. Ryabova, P.V. Grachev, V.I. Makarov, S.V. Kuznetsov, O.V. Uvarov, V.V. Voronov, A.D. Yapryntsev, V.K. Ivanov, V.B. Loschenov. Laser Phys. Lett., 17, 125701 (2020). DOI: 10.1088/1612-202X/abbede
- I.N. Bazhukova, V.A. Pustovarov, A.V. Myshkina, M.V. Ulitko. Opt. Spectrosc., 128, 2050 (2020). DOI: 10.1134/S0030400X20120875
- A.A. Skaptsov, S.O. Ustalkov, A.H. Mohammed, A.M. Zakharevich, A.A. Kozyrev, E.A. Sagaidachnaya, V.I. Kochubey. Opt. Spectrosc., 128, 952 (2020). DOI: 10.1134/S0030400X20070218
- F. Auzel. Chem. Rev., 104 (1), 139 (2004). DOI: 10.1021/cr020357g
- Y. Hu, Y. Sun, Y. Li, S. Sun, J. Huo, X. Zhao. RSC Adv., 4, 43653 (2014). DOI: 10.1039/C4RA05205F
- A. Pilch, D. Wawrzynczyk, M. Kurnatowska, B. Czaban, M. Samc, W. Strek, A. Bednarkiewicz. J. Lumin., 182, 114 (2017). DOI: 10.1016/j.jlumin.2016.10.016
- I.D. Kormshikov, V.V. Voronov, S.A. Burikov, T.A. Dolenko, S.V. Kuznetsov. Nanosystems: Physics, Chemistry, Mathematics, 12, 218 (2021). DOI: 10.17586/2220-8054-2021-12-2-218-223
- M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel. Phys. Rev. B, 61 (5), 3337 (2000). DOI: 10.1103/PHYSREVB.61.3337
- J.F. Suyver, A. Aebischer, S. Garci a-Revilla, P. Gerner, H.U. Gudel. Phys. Rev. B, 71, 125123 (2005). DOI: 10.1103/PhysRevB.71.125123
- C.S. Ma, X.X. Xu, F. Wang, Z.G. Zhou, D.M. Liu, J.B. Zhao, M. Guan, C.I. Lang, D.Y. Jin. Nano Lett., 17, 2858 (2017). DOI: 10.1021/acs.nanolett.6b05331
- M. Misiak, K. Prorok, B. Cichy, A. Bednarkiewicz, W. Str ek. Optical Materials, 35, 1124 (2013). DOI: 10.1016/j.optmat.2013.01.002
- T. Cong, Y. Ding, S. Xin, X. Hong, H. Zhang, Y. Liu. Langmuir, 32 (49), 13200 (2016). DOI: 10.1021/acs.langmuir.6b03593.s001
- J. Zhou, G. Chen, Y. Zhu, L. Huo, W. Mao, D. Zou, X. Sun, E. Wu, H. Zeng, J. Zhang, L. Zhang, J. Qiu, S. XuInten. J. Mater. Chem. C, 3, 364 (2015). DOI: 10.1039/C4TC02363C
- D.L. Gao, X.Y. Zhang, B. Chong, G.Q. Xiao, D.P. Tian. Phys. Chem. Chem. Phys., 19, 4288 (2017). DOI: 10.1039/c6cp06402g
- A. Zhou, F. Song, Y. Han, F. Song, D. Ju, K. Adnan, L. Liu, M. Feng. J. Lumin., 194, 225 (2018). DOI: 10.1016/j.jlumin.2017.09.055
- Z.P. Meng, S.F. Zhang, S.L. Wu. J. Lumin., 227, 117566 (2020). DOI: 10.1016/j.jlumin.2020.117566
- L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, F. Pelle. App. Phys. Lett., 102, 143114 (2013). DOI: 10.1063/1.4800445
- H.C. Liu, C.T. Xu, D. Lindgren, H.Y. Xie, D. Thomas, C. Gundlach S. Andersson-Engels. Nanoscale, 5, 4770 (2013). DOI: 10.1039/C3NR00469D
- J. Liu, G. Chen, S. Hao, C. Yang. Nanoscale, 9, 91 (2017). DOI: 10.1039/C6NR08675F
- C.S. Ma, X.X. Xu, F. Wang, Z.G. Zhou, D.M. Liu, J.B. Zhao, M. Guan, C.I. Lang, D.Y. Jin. Nano Lett., 17, 2858 (2017). DOI: 10.1021/acs.nanolett.6b05331
- J. Bergstrand, Q.Y. Liu, B.R. Huang, X.Y. Peng, C. Wurth, U. Resch-Genger, Q.Q. Zhan, J.Widengren, H. Agren, H.C. Liu. Nanoscale, 11, 4959 (2019). DOI: 10.1039/C8NR10332A
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.