Influence of the intensity of exciting radiation on the luminescent properties of nanopowders NaYF4 : Yb/Tm
Burikov S.A. 1, Filippova E.A. 1, Fedyanina A.A.1, Kuznetsov S.V. 2, Proydakova V. Yu. 2, Voronov V.V. 2, Dolenko T.A. 1
1Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: sergey.burikov@gmail.com, filippova.ea17@physics.msu.ru, fedyanechka@mail.ru, kouznetzovsv@gmail.com, vera.proydakova@gmail.com, voronov@lst.gpi.ru, tdolenko@mail.ru

PDF
Intensity of the bands of upconversion luminescence of β-NaYF4 : Yb3+/Tm3+ nanopowders in DMSO suspensions vs intensity of exciting radiation were analyzed. Ranges of changes in the intensity of excitation have been established, in which either the processes of energy transfer from the sensitizer ion to the activator ion or the decay of intermediate levels of activator ions dominate. Keywords: rare earth ions, upconversion luminescence, nanoparticle suspensions, sensitizer, activator.
  1. F. Auzel. J. Lumin., 223, 116900 (2020). DOI: 10.1016/j.jlumin.2019.116900
  2. Q. Liu. Studies of optical properties of lanthanide upconversion nanoparticles for emerging applications. Ph.D. Thesis (Sweden: KTH Royal Institute of Technology, Stockholm, 2020), pp. 73. URL: https://www.diva-portal.org/smash/ get/diva2:1429054/SUMMARY01.pdf
  3. S. Han, R. Deng, X. Xie, X. Liu. Angew. Chem. Int. Ed., 53, 11702 (2014). DOI: 10.1002/anie.201403408
  4. M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, F. Xu. Nanoscale, 7, 4423 (2015). DOI: 10.1039/c4nr06944g
  5. O.E. Sarmanova, S.A. Burikov, K.A. Laptinskiy, O.D. Kotova, E.A. Filippova, T.A. Dolenko. Spectrochim. Acta, Part A, 241, 118627 (2020). DOI: 10.1016/j.saa.2020.118627
  6. D. Pominova, V. Proydakova, I. Romanishkin, A. Ryabova, S. Kuznetsov, O. Uvarov, P. Fedorov, V. Loschenov. Nanomaterials, 10, 1992 (2020). DOI: 10.3390/nano10101992
  7. D. Jaque, F. Vetrone. Nanoscale, 4, 4301 (2012). DOI: 10.1039/C2NR30764B
  8. A. Shalav, B.S. Richards, M.A. Green. Sol. Energy Mater. Sol. Cells, 91, 829 (2007). DOI: 10.1016/j.solmat.2007.02.007
  9. A. Escudero, A.I. Becerro, C. Carrillo-Carrion, N.O. Nunez, M.V. Zyuzin, M. Laguna, D. Gonzalez-Mancebo, M. Ocana, W.J. Parak. Nanophotonics, 6, 881 (2017). DOI: 10.1515/nanoph-2017-0007
  10. S.A. Burikov, O.D. Kotova, O.E. Sarmanova, S.V. Kuznetsov, V.Y. Proydakova, V.V. Voronov, P.P. Fedorov, S.V. Patsaeva, T.A. Dolenko. JETP Lett., 111, 525 (2020). DOI: 10.1134/S0021364020090064
  11. D.V. Pominova, V.Y. Proydakova, I.D. Romanishkin, A.V. Ryabova, P.V. Grachev, V.I. Makarov, S.V. Kuznetsov, O.V. Uvarov, V.V. Voronov, A.D. Yapryntsev, V.K. Ivanov, V.B. Loschenov. Laser Phys. Lett., 17, 125701 (2020). DOI: 10.1088/1612-202X/abbede
  12. I.N. Bazhukova, V.A. Pustovarov, A.V. Myshkina, M.V. Ulitko. Opt. Spectrosc., 128, 2050 (2020). DOI: 10.1134/S0030400X20120875
  13. A.A. Skaptsov, S.O. Ustalkov, A.H. Mohammed, A.M. Zakharevich, A.A. Kozyrev, E.A. Sagaidachnaya, V.I. Kochubey. Opt. Spectrosc., 128, 952 (2020). DOI: 10.1134/S0030400X20070218
  14. F. Auzel. Chem. Rev., 104 (1), 139 (2004). DOI: 10.1021/cr020357g
  15. Y. Hu, Y. Sun, Y. Li, S. Sun, J. Huo, X. Zhao. RSC Adv., 4, 43653 (2014). DOI: 10.1039/C4RA05205F
  16. A. Pilch, D. Wawrzynczyk, M. Kurnatowska, B. Czaban, M. Samc, W. Strek, A. Bednarkiewicz. J. Lumin., 182, 114 (2017). DOI: 10.1016/j.jlumin.2016.10.016
  17. I.D. Kormshikov, V.V. Voronov, S.A. Burikov, T.A. Dolenko, S.V. Kuznetsov. Nanosystems: Physics, Chemistry, Mathematics, 12, 218 (2021). DOI: 10.17586/2220-8054-2021-12-2-218-223
  18. M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel. Phys. Rev. B, 61 (5), 3337 (2000). DOI: 10.1103/PHYSREVB.61.3337
  19. J.F. Suyver, A. Aebischer, S. Garci a-Revilla, P. Gerner, H.U. Gudel. Phys. Rev. B, 71, 125123 (2005). DOI: 10.1103/PhysRevB.71.125123
  20. C.S. Ma, X.X. Xu, F. Wang, Z.G. Zhou, D.M. Liu, J.B. Zhao, M. Guan, C.I. Lang, D.Y. Jin. Nano Lett., 17, 2858 (2017). DOI: 10.1021/acs.nanolett.6b05331
  21. M. Misiak, K. Prorok, B. Cichy, A. Bednarkiewicz, W. Str ek. Optical Materials, 35, 1124 (2013). DOI: 10.1016/j.optmat.2013.01.002
  22. T. Cong, Y. Ding, S. Xin, X. Hong, H. Zhang, Y. Liu. Langmuir, 32 (49), 13200 (2016). DOI: 10.1021/acs.langmuir.6b03593.s001
  23. J. Zhou, G. Chen, Y. Zhu, L. Huo, W. Mao, D. Zou, X. Sun, E. Wu, H. Zeng, J. Zhang, L. Zhang, J. Qiu, S. XuInten. J. Mater. Chem. C, 3, 364 (2015). DOI: 10.1039/C4TC02363C
  24. D.L. Gao, X.Y. Zhang, B. Chong, G.Q. Xiao, D.P. Tian. Phys. Chem. Chem. Phys., 19, 4288 (2017). DOI: 10.1039/c6cp06402g
  25. A. Zhou, F. Song, Y. Han, F. Song, D. Ju, K. Adnan, L. Liu, M. Feng. J. Lumin., 194, 225 (2018). DOI: 10.1016/j.jlumin.2017.09.055
  26. Z.P. Meng, S.F. Zhang, S.L. Wu. J. Lumin., 227, 117566 (2020). DOI: 10.1016/j.jlumin.2020.117566
  27. L. Caillat, B. Hajj, V. Shynkar, L. Michely, D. Chauvat, J. Zyss, F. Pelle. App. Phys. Lett., 102, 143114 (2013). DOI: 10.1063/1.4800445
  28. H.C. Liu, C.T. Xu, D. Lindgren, H.Y. Xie, D. Thomas, C. Gundlach S. Andersson-Engels. Nanoscale, 5, 4770 (2013). DOI: 10.1039/C3NR00469D
  29. J. Liu, G. Chen, S. Hao, C. Yang. Nanoscale, 9, 91 (2017). DOI: 10.1039/C6NR08675F
  30. C.S. Ma, X.X. Xu, F. Wang, Z.G. Zhou, D.M. Liu, J.B. Zhao, M. Guan, C.I. Lang, D.Y. Jin. Nano Lett., 17, 2858 (2017). DOI: 10.1021/acs.nanolett.6b05331
  31. J. Bergstrand, Q.Y. Liu, B.R. Huang, X.Y. Peng, C. Wurth, U. Resch-Genger, Q.Q. Zhan, J.Widengren, H. Agren, H.C. Liu. Nanoscale, 11, 4959 (2019). DOI: 10.1039/C8NR10332A

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru