Probing the structure of Moxifloxacin and Norfloxacin by density functional theory and Raman spectroscopy
In the present work, structures of two fluoroquinolone molecules namely Moxifloxacin and Norfloxacin are investigated using density functional theory and the Raman spectroscopy. The density functional theory calculation with B3LYP-6-31+G(d,p) level of theory reveals several structures of two molecules. The low energy stable structures of Moxifloxacin show multiple intramolecular H-bonds which could be responsible for the stabilization of these structures, however, the orientation of the (4aS, 7aS)-hexahydro-1H-pyrrolo[3,4-b]pyridin (hpb) ring determines the most stable structure. In Norfloxacin, the orientation of the ethyl group in the plane perpendicular to the ring frame determines the most stable structure whereas, the orientation of piperazine ring is critical for the determination of stable structure of the Norfloxacin zwitterion. Complexes of most stable structures of Moxifloxacin and Norfloxacin with one and two water molecules were also calculated. The Raman spectra were calculated for low energy structures of Moxifloxacin and Norfloxacin and also for their complexes with one and two water molecules. The experimental Raman spectra were obtained on powder sample of two molecules utilizing our lab-built Raman spectroscopy setup. The experimental Raman spectra were analyzed in light of the calculated Raman spectra of neutral molecules and their complexes with water. It was found that, in the powder form, the Raman spectra of two molecules can be better explained if intermolecular H-bonding with water molecules is considered. The study, therefore, confirms the hygroscopic nature of two molecules under ambient environment. Keywords: Moxifloxacin, Norfloxacin, density functional theory, Raman spectroscopy.
- C. Puzzarini. Int. J. Quantum Chem., 116 (21), 1513-1519 (2016)
- C. Puzzarini, J.F. Stanton and J. Gauss. Int. Rev. Phys. Chem., 29 (2), 273-367 (2010)
- D.C. Hooper. Biochimica et Biophysica Acta (BBA) --- Gene Struc. Expr. 1400 (1), 45-61 (1998)
- J. Duan, F.G. Vogt, X. Li, D. Hayes Jr and H.M. Mansour. Int. J. Nanomed. 8, 3489 (2013)
- M.B. Mamian-Lopez and R.J. Poppi. Anal. Bioanal. Chem., 405 (24), 7671-7677 (2013)
- C. Puigjaner, R. Barbas, A. Portell, M. Font-Bardia, X. Alcobe and R. Prohens. Crys. Growth Des. 10 (7), 2948-2953 (2010)
- P.C. Appelbaum and P.A. Hunter. Int. J. Antimicrob. Ag. 16 (1), 5-15 (2000)
- U. Neugebauer, A. Szeghalmi, M. Schmitt, W. Kiefer, J. Popp and U. Holzgrabe. Spectrochim. Acta A. 61 (7), 1505-1517 (2005)
- D. Yan, J.R. Popp, M.W. Pletz and T. Frosch. Acs Photonics 4 (1), 138-145 (2017)
- A. Grunenberg and P. Bosche. United States Patent US5849752A (1998)
- M.S. Reddy, S. Eswaraiah, V.V.N.K.V. Prasada, R.R. Kumar, N. Srinivasreddy and V. Ravindra. United States Patent US20050137227A1 (2007)
- F. Nicolau and J. Prieto. Spanish Patent ES2316270 (2009)
- S. Turchetta, P. Massardo and V. Aromatario. World Intellectual Property Organization Patent WO2005054240A1 (2012)
- M. Reddy, C. Nagaraju, S. Rajan and A. Ramprasda. World Intellectual Property Organization Patent WO2007010555 (2007)
- A. Ramakrishnana and S. Pamujula. World Intellectual Property Organization Patent WO2011121596 (2011)
- F. Zhang and Y. Zhang. Chinese Patent CN102321083 (2012)
- D.R. Rao, R.N. Kankan, S.L. Pathi, R. Puppala, M. Gangrade and S. Kanathala. World Intellectual Property Organization Patent WO2008059223A2 (2012)
- N.A. Charoo, D.B. Abdallah, T. Parveen, B. Abrahamsson, R. Cristofoletti, D.W. Groot, P. Langguth, A. Parr, J.E. Polli and M. Mehta. J. Pharm. Sci. 109 (9), 2654-2675 (2020)
- S. Upadhyay, P. Kumar and V. Arora. J. Struct. Chem. 47 (6), 1078-1083 (2006)
- A. Rusu, G. Hancu, G. Toth, F. Toma, A.D. Mare, A. Man, B.S. Velescu and V. UivaroSi. Farmacia 64 (6), 922-932 (2016)
- W. Lian, Y. Liu, H. Yang, H. Ma, R. Su, X. Han, B. Zhao and L. Niu. Spectrochim. Acta A. 207, 307-312 (2019)
- Q. Huang, C. Fang, M. Muhammad and G. Yao. Chemosphere 238, 124618 (2020)
- G.P. Vitorino, G.D. Barrera, M.R. Mazzieri, R. Binning Jr and D.E. Bacelo. Chem. Phys. Lett. 432 (4-6), 538-544 (2006)
- S. Sahoo, C.K. Chakraborti, S.C. Mishra, U.N. Nanda and S. Naik. J. Pharm. Res. 4, 1129 (2011)
- R. Barbas, F. Marti, R. Prohens and C. Puigjaner. Crys. Growth Des. 6 (6), 1463-1467 (2006)
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox. (Wallingford CT, 2009)
- R.K. Sinha and P. Biswas. J. Mol. Struct. 1222, 128946 (2020)
- R.K. Sinha. Instrum. Exp. Tech+ 64 (6), 840-847 (2021)
- K. Morokuma. Acc. Chem. Res. 10 (8), 294-300 (1977)
- T. Steiner. Angew. Chem. Int. Ed. 41 (1), 48-76 (2002)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.