Noise influence on characteristics of current, flowing through semiconductor superlattice, in high frequency oscillation mode
Selskii A. O. 1, Moskalenko O. I. 1, Koronovskii A. A. 1
1Saratov State University, Saratov, Russia
Email: selskiiao@gmail.com
Noise influence on characteristics of current, flowing through semiconductor superlattice of nanodevice with prospects of using in terahertz spectroscopy, is examined. It is demonstrated, that the limit voltage, at which the current oscillations start, slightly depends on noise intensity. Oscillation amplitude increases at some noise intensity values for case without magnetic field and in the presence of a tilted magnetic field. At the same time with increase of noise intensity at developed oscillations the basic frequency decreases, while higher harmonics amplitudes can significantly decrease. Keywords: semiconductor superlattices, microwave devices, high frequency spectroscopy, added noise, spectral analysis.
- M. Tononuchi. Nature Photonics, 1, 97-105 (2007). DOI: 10.1038/nphoton.2007.3
- C. Yu, S. Fan, Y. Sun, E. Pickwell-MacPherson. Quant. Imaging Med. Surg., 2, 33-45 (2012). DOI: 10.3978/j.issn.2223-4292.2012.01.04
- S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M.S. Vitiello, R. Torre. Phys. Rev. X, 4, 021006 (2014). DOI: 10.1103/PhysRevX.4.021006
- T. Kashiwagi. Appl. Phys. Lett., 104, 082603 (2014). DOI: 10.1063/1.4866898
- D.K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, W.L. Barnes. Phys. Rev. B, 89, 125426 (2014). DOI: 10.1103/PhysRevB.89.125426
- A.O. Selskii, A.A. Koronovskii, A.E. Hramov, O.I. Moskalenko, K.N. Alekseev, M.T. Greenaway, F. Wang, T.M. Fromhold, A.V. Shorokhov, N.N. Khvastunov, A.G. Balanov. Phys. Rev. B, 84, 235311 (2011). DOI: 10.1103/PhysRevB.84.235311
- V.L. Bratman, A.E. Fedotov, Y.K. Kalynov. IEEE Transactions on Plasma Science, 27 (2), 456-461 (1999). DOI: 10.1109/27.772273
- M.K. Hornstein, V.S. Bajaj, R.G. Griffin. IEEE Transactions on Electron Devices, 52 (5), 798-807 (2005). DOI: 10.1109/TED.2005.845818
- A. Wacker. Phys. Rep., 357, 1-111 (2002). DOI: 10.1016/S0370-1573(01)00029-1
- J.B. Gunn. IBM J. Res. Dev., 8, 141 (1964). DOI: 10.1147/rd.82.0141
- A.E. Hramov, A.A. Koronovskii, S.A. Kurkin, V.V. Makarov, M.B. Gaifullin, K.N. Alekseev, N. Alexeeva, M.T. Greenaway, T.M. Fromhold, A. Patane, F.V. Kusmartsev, V.A. Maximenko, O.I. Moskalenko, A.G. Balanov. Phys. Rev. Lett., 112, 116603 (2014). DOI: 10.1103/PhysRevLett.112.116603
- A.A. Koronovskii, A.E. Hramov, V.A. Maximenko, I.O. Moskalenko, K.N. Alekseev, M.T. Greenaway, T.M. Fromhold, A.G. Balanov. Phys. Rev. B, 88, 165304 (2013). DOI: 10.1103/PhysRevB.88.165304
- A. Wacker, G. Schwarz, F. Prengel, E. Scholl, J. Kastrup, H.T. Grahn. Phys. Rev. B, 52, 13788 (1995). DOI: 10.1103/PhysRevB.52.13788
- J. Hizanidis, A. Balanov, A. Amann, E. Scholl. Phys. Rev. Lett., 96, 244104 (2006). DOI: 10.1103/PhysRevLett.96.244104
- J. Hizanidis, A. Balanov, A. Amann, E. Scholl. Intern. J. Bifurcation and Chaos, 16, 1701-1710 (2006). DOI: 10.1142/S0218127406015611
- E. Mompo, M. Ruiz-Garcia, M. Carretero, H.T. Grahn, Y. Zhang, L.L. Bonilla. Phys. Rev. Lett., 121, 086805 (2018). DOI: 10.1103/PhysRevLett.121.086805
- T.M. Fromhold, A. Patane, S. Bujkiewicz, P.B. Wilkinson, D. Fowler, D. Sherwood, S.P. Stapleton, A.A. Krokhin, L. Eaves, M. Henini, N.S. Sankeshwar, F.W. Sheard. Nature, 428, 726-730 (2004). DOI: 10.1038/nature02445
- R. Scheuerer, E. Schomburg, K.F. Renk, A. Wacker, E. Scholl. Appl. Phys. Lett., 81, 1515-1517 (2002). DOI: 10.1063/1.1500770.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.