Luminescence transformation mechanisms of indocyanine green dye in the presence of gold nanorods
Kondratenko T. S. 1, Chevychelova T. A. 1, Ovchinnikov O. V. 1, Smirnov M. S. 1,2, Perepelitsa A. S. 1
1Voronezh State University, Voronezh, Russia
2Voronezh State University of Engineering Technologies, Voronezh, Russia
Email: optichka@yandex.ru
Spectral-luminescent manifestations of the plasmon-exciton interaction between gold nanorods (Au NRs) with average length and diameter of 35± 5 nm and 9± 2 nm, passivated by molecules of cetyltrimethylammonium bromide (CTAB) and the indocyanine green dye (ICG) molecules are found. Extinguishing of the ICG luminescence near Au NRs and its buildup are detected at spacial separation of hybrid nanosystem components achieved by a spherical shell of SiO2 with an average thickness of 26±5 nm formed on the Au NRs. The amplification of the luminescence with growth of the dielectric shell is provided due to blocking of steric transformations of ICG polymethine chain when the interaction emerges between the dye and the silicious shell, and the Purcell effect. Keywords: luminescence, indocyanine green, gold nanorods, Purcell effect.
- M. Ogawa, N. Kosaka, P.L. Choyke, H. Kobayashi. Cancer Res., 69, 1268 (2007). DOI: 10.1158/0008-5472.can-08-3116
- P. Xue, R. Yang, L. Sun, Q. Li, L. Zhang, Zh. Xu, Y. Kang. Nano-Micro Lett., 10 (74), 1 (2018). DOI: 10.1007/s40820-018-0227-z
- A.N. Spitsyn, D.V. Utkin, O.S. Kuznetsov, P.S. Yerokhin, N.A. Osina, V.I. Kochubey. Opt. i spektr., 129 (1), 100 (2021) (in Russian). DOI: 10.21883/EOS.2022.06.54712.2938-21
- P. Das, A. Sedighi, U.J. Krull. Anal. Chim. Acta, 1041, 1 (2018). DOI: 10.1016/j.aca.2018.07.060
- H.-J. Lim, Ch.-H. Oh. Photodiagnosis. Photodyn. Ther., 8 (4), 337 (2011). DOI: 10.1016/j.pdpdt.2011.06.002
- C. Shirata, J. Kaneko, Y. Inagaki et. al. Sci. Rep., 7, 13958 (2017). DOI: 10.1038/s41598-017-14401-0
- S. Li, S. Yang, C. Liu, J. He, T. Li, C. Fu, X. Meng, H. Shao. Int. J. Nanomedicine, 16, 433 (2021). DOI: 10.2147/IJN.S275938
- A. Hackethal, M. Hirschburger, S. Eicker, et. al. Geburtshilfe und Frauenheilkunde, 78 (01), 54 (2018). DOI: 10.1055/s-0043-123937
- Y.-H. Han, Ranjith K. Kankala, Sh.-B. Wang, Ai-Zheng. Chen. Nanomaterials, 8 (6), 360 (2018). DOI: 10.3390/nano8060360
- G. Jo, B.Y. Lee, E.J. Kim, M.H. Park, H. Hyun. Biomedicines, 8 (11), 476 (2020). DOI: 10.3390/biomedicines8110476
- K. Gowsalya, V. Yasothamani, R. Vivek. Nanoscale Adv., 3, 3332 (2021). DOI: 10.1039/D1NA00059D
- W. Li, H. Zhang, X. Guo, et al. ACS Appl. Mater Interfaces, 9, 3354 (2017). DOI: 10.1021/acsami.6b13351
- R. Philip, A. Penzkofer, W. Baiumler, R.M. Szeimies, C. Abels. J. Photochem. Photobiol. A, 96 (1-3), 137 (1996). DOI: 10.1016/1010-6030(95)04292-X
- S. Reindl, A. Penzkofer, S.H. Gong, M. Landthaler, R. Szeimies, C. Abels, W. Bumler. J. Photochem. Photobiol. A, 105 (1), 65 (1997). DOI: 10.1016/s1010-6030(96)04584-4
- A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, A. Liebert. J. Biomed. Opt., 16 (6), 067010 (2011). DOI: 10.1117/1.3593386
- N.Y. Hong, H.R. Kim, H.M. Lee, D.S. Sohn, K.G. Kim. Biomed. Opt. Express, 7 (5), 1637 (2016). DOI: 10.1364/BOE.7.001637
- T. Jin, S. Tsuboi, A. Komatsuzaki, Y. Imamura, Y. Muranaka, T. Sakata, H. Yasuda. Med. Chem. Commun., 7, 632 (2016). DOI: 10.1039/c5md00580a
- E.H. Lee, J.K. Kim, J.S. Lim, S.J. Lim. Colloids Surf. B, 136, 305 (2015). DOI: 10.1016/j.colsurfb.2015.09.025
- A.K. Kirchherr, A. Briel, K. Mder. Mol. Pharm., 6 (2), 480 (2009). DOI: 10.1021/mp8001649
- B. Jung, V.I. Vullev, B. Anvari. IEEE J. Sel. Top. Quantum. Electron., 20 (2), 7000409 (2014). DOI: 10.1109/jstqe.2013.2278674
- E.I. Alti nolu, T.J. Russin, J.M. Kaiser, B.M. Barth, P.C. Eklund, M. Kester, J.H. Adair. ACS Nano., 2 (10), 2075(2008). DOI: 10.1021/nn800448r
- C.H. Lee, S.H. Cheng, Y.J. Wang, Y.C. Chen, N.T. Chen, et. al. Adv. Funct. Mater., 19 (2), 215 (2009). DOI: 10.1002/adfm.200800753
- R.H. Patel, A.S. Wadajkar, N.L. Patel, V.C. Kavuri, K.T. Nguyen, H. Liu. J. Biomed. Opt., 17 (4), 046003 (2012). DOI: 10.1117/1.jbo.17.4.046003
- F.P. Navarro, M. Berger, S. Guillermet, V. Josserand, L. Guyon, E. Neumann, F. Vinet, I. Texier. J. Biomed. Nanotechnol., 8, 730 (2012). DOI: 10.1166/jbn.2012.1430
- Z. Sheng, D. Hu, M. Zheng, P. Zhao, H. Liu, et. al. ACS Nano., 8, 12310 (2014). DOI: 10.1021/nn5062386
- Q. Chen, C. Liang, X. Wang, J. He, Y. Li, Z. Liu. Biomaterials, 35, 9355 (2014). DOI: 10.1016/j.biomaterials.2014.07.062
- P. Huang, Y. Gao, J. Lin, H. Hu, H. Liao, et. al. ACS Nano., 9, 9517 (2015). DOI: 10.1021/acsnano.5b03874
- T.S. Kondratenko, M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, A.N. Latyshev.Opt. Spectr., 128 (8), 1278 (2020). DOI: 10.1134/S0030400X20080172
- T.S. Kondratenko,M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva. J. Nanopart. Res., 22 (9), 271 (2020). DOI: 10.1007/s11051-020-04981-w
- T.S. Kondratenko, M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva. J. Fluoresc., 30 (3), 581 (2020). DOI: 10.1007/s10895-020-02521-2
- E.S. Tuchina, V.V. Tuchin, B.N. Khlebtsov, N.G. Khlebtsov. Quantum Elec., 41 (4), 354 (2011). DOI: 10.1070/QE2011v041n04ABEH014595
- R. Jijie, T. Dumych, L. Chengnang, J. Bouckaert, K. Turcheniuk, et. al. J. Mater. Chem. B, (2016). DOI: 10.1039/C5TB02697K
- J. Malicka, I. Gryczynski, C.D. Geddes, J.R. Lakowicz. J. Biomed. Opt., 8 (3), 472 (2003). DOI: 10.1117/1.1578643
- B. Zhang, L. Wei, Zh. Chu. J. Photochem. Photobiol. A: Chem., 375, 244 (2019). DOI: 10.1016/j.jphotochem.2019.02.028
- Y. Liu, M. Xu, Q. Chen, G. Guan, W. Hu, X. Zhao, et. al. Int. J. Nanomedicine, 4747 (2015). DOI: 10.2147/IJN.S82940
- F. Tam, G.P. Goodrich, Br.R. Johnson, N.J. Halas. Nano Lett., 7 (2) 496 (2007). DOI: 10.1021/nl062901x
- N. Toropov, A. Kamalieva, R.O. Volkov, E. Kolesova. Optics \& Laser Technology, 121, 105821 (2020). DOI: 10.1016/j.optlastec.2019.105821
- Y. Luo, J. Zhao. Nano Research., 12 (9), 2164 (2019). DOI: 10.1007/s12274-019-2390-z
- I.G. Grevtseva, T.A. Chevychelova, V.N. Derepko, O.V. Ovchinnikov, M.S. Smirnov, A.S. Perepelitsa, A.S. Parshina. Kondensirovannye sredy i mezhfaznye granitsy, 23 (1), 25 (2021) (in Russian). DOI: 10.17308/kcmf.2021.23/3294 [I.G. Grevtseva, T.A. Chevychelova, V.N. Derepko, O.V. Ovchinnikov, M.S. Smirnov, A.S. Perepelitsa, A.S. Parshina. Condensed Matter and Interphases, 23 (1), 25 (2021). DOI: 10.17308/kcmf.2021.23/3294]
- I.G. Grevtseva, T.A. Chevychelova, V.N. Derepko, M.S. Smirnov, A.N. Latyshev, O.V. Ovchinnikov, E.I. Enikeev, P.A. Golovinski, A.S. Selyukov. Bulletin of the Lebedev Physics Institute, 48 (3), 81 (2021). DOI: 10.3103/S1068335621030052
- V.V. Savchuk, R.V. Gamernyk, I.S. Virt, et. al. AIP Advances, 9, 045021 (2019). DOI: 10.1063/1.5090900
- A.L. Rodarte, A.R. Tao. J. Phys. Chem. C, 121 (6), 3496 (2017). DOI: 10.1021/acs.jpcc.6b08905
- X. Meng, A.V. Kildishev, K. Fujita, et. al. Nano Lett., 13 (9), 4106-4112 (2013). DOI: 10.1021/nl4015827
- N. Toropov, A. Kamalieva, A. Starovoytov, S. Zaki, T. Vartanyan. Adv. Photonics Res., 2, 2000083 (2021). DOI: 10.1002/adpr.202000083
- B.I. Shapiro, E.S. Kol'tsova, A.G. Vitukhnovskii, et. al. Nanotechnologies in Russia, 6, 456 (2011). DOI: 10.1134/S1995078011040112
- A.N. Kamalieva, N.A. Toropov, K.V. Bogdanov, T.A. Vartanyan. Opt. Spectrosc., 124 (3), 319 (2018). DOI: 10.1134/S1995078011040112
- E.M. Purcell. Phys. Rev., 69, 681 (1946). DOI: 10.1103/PhysRev.69.674.2
- J. Li, A. Krasavin, L. Webster, et al. Sci Rep., 6, 21349 (2016). DOI: 10.1038/srep21349
- E. Toth, D. Ungor, T. Novak, et. al. Nanomaterials, 10, 1048 (2020). DOI: 10.3390/nano10061048
- R. Becker, B. Liedberg, P.-O. Kall. J. Colloid. Interf. Sci., 343 (1) 25(2010). DOI: 10.1016/j.jcis.2009.10.075
- F.W.B. van Leeuwen, B. Cornelissen, F. Caobelli, et. al. EJNMMI Radiopharm. Chem., 2 (15),(2017). DOI: 0.1186/s41181-017-0034-8
- A.-K. Kirchherr, A. Briel, K. Mader. Mol. Pharm., 6 (2), 480 (2009). DOI: 10.1021/mp8001649
- M. Tornblom, U. Henriksson, M.J. Ginley. Phys. Chem. B, 101 (19) 3901 (1997). DOI: 10.1021/jp9708660
- S. Link, M.B. Mohamed, M.A. El-Sayed. Phys. Chem. B, 103 (16), 3073 (1999). DOI: 10.1021/jp990183f
- T.C. Barros, S.H. Toma, H.E. Toma, E.L. Bastos, M.S. Baptista. J. Phys. Org. Chem., 23, 893 (2010). DOI: 10.1002/poc.1692
- J.R. Lombardi, R.L. Birke. J. Phys. Chem. C, 112, 5605 (2008). DOI: 10.1021/jp800167v
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.