Method of selection of objects on a hyperspectral image based on the analysys of their contours
Shipko V. V. 1, Volobuev M. F. 1
1Russian Air Force Military Educational and Scientific Center Zhukovsky–Gagarin Air Force Academy, Voronezh, Russia
Email: shipko.v@bk.ru
A new method of spectral selection of given objects on hyperspectral images is considered. At the first stage of the method, hypotheses are tested using the Neyman-Pearson criterion about the presence of object contours in neighboring pixels relative to the simple alternative of their absence consistently over all spectral components. If a decision is made about the presence of a contour in at least one spectral channel, these pixels are analyzed at the second stage with respect to their distribution over the spectral range according to the criterion of maximum a posteriori probability density. Given the values of the mathematical expectation of the gradient difference between the spectral components, hypotheses are formed about the presence or absence of the contour of the desired object. The decision is made on the basis of a comparison of the decision statistics with the likelihood functions. The characteristics of detection and the results of experiments performed on real images are presented. Keywords: hyperspectral images, contour, gradient, likelihood function.
- A.N. Vinogradov, V.V. Egorov, A.P. Kalinin, A.I. Rodionov, I.D. Rodionov. Optichesky Zhurnal, 88 (4), 54 (2016) (in Russian)
- V.E. Pozhar, A.S. Machikhin, M.I. Gaponov, S.V. Shirokov, M.M. Mazur, A.E. Sheryshev. Light \& Engineering, 27 (3), 99 (2019). DOI: 10.33383/2018-029
- R. Gonzalez, R. Woods. Tsifrovaya obrabotka izobrazheniy. 3rd edition. (Tekhnosfera, Moskva, 2019) (in Russian)
- A.I. Perov, G.G. Sokolov. Radiotekhnika, 7, 83 (1998) (in Russian)
- A.A. Sirota, A.I. Solomatin. Komp'yuternaya optika, 34 (1), 109 (2010) (in Russian)
- A.A. Sirota, A.I. Solomatin. Vestnik VGU, seriya: sistemniy analiz i informatsionnye tehnologii, 1, 58 (2008) (in Russian)
- C.P. Huang, R.Z. Wang. Pattern Recognition and Image Analysis, 16 (3), 406 (2006)
- K.D. Grebenshikov, A.A. Spektor. Avtometriya, 4, 119 (2001) (in Russian)
- P.A. Chochia. Informatsionnye protsessy, 14 (2), 117 (2014) (in Russian)
- R.A. Shovengerdt. Distantsionnoe zondirovanie. Modeli i metody obrabotki izobrazheniy Tekhnosfera, Moskva, 2013) (in Russian)
- T.A. Sheremetieva, G.N. Filippov, A.M. Malov. J. Opt. Tech., 82 (1), 24 (2015)
- V.V. Shipko, E.A. Samoilin, V.E. Pozhar, A.S. Machikhin. Optoelectronics, Instrumentation and Data Processing, 57 (6), 618 (2021). DOI: 10.3103/S8756699021060145
- V.V. Shipko. Tsifrovaya obrabotka signalov, 4, 36 (2021)
- Sovremennye tekhnologii obrabotki dannykh distantsionnogo zondirovaniya Zemli, edited by V.V. Eremeeva (Fizmatlit, Moskva, 2015) (in Russian)
- V.G. Repin, G.P. Tartakovskiy. Statisticheskiy sintez pri apriornoy neopredelennosti i adaptatsiya informatsionnykh sistem (Sovetskoe radio, Moskva, 1977) (in Russian)
- B.R. Levin. Teoreticheskie osnovy radiotekhniki. Book 2. (Sovetskoe radio, Moskva, 1968) (in Russian)
- M.F. Volobuev, V.A. Ufaev. Informatsionno-izmeritelnye i upravlyaushchie sistemy, 15 (10), 28 (2017) (in Russian)
- E.S. Ventsel, L.A. Ovcharova. Prikladnye zadachi teorii veroyatnostei (Radio i svyaz, Moskva, 1983) (in Russian)
- I.N. Bronshtein, K.A. Semendyaev. Spravochnik po matematike dlya inzhenerov i uchashchikhsya VTUZov (Nauka, Moskva, 1980) (in Russian)
- I.A. Kozinov, G.N. Maltsev. Opt. Spectrosc., 121 (6), 934 (2016). DOI: 10.1134/S0030400X16120158
- M.M. Mazur, Y.A. Suddenok, V.E. Pozhar. Opt. Spectrosc., 128 (2) 274 (2020). DOI: 10.1134/S0030400X20020162.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.