Empirical quality criteria for the approximation of the electronic term of a diatomic molecule by the Morse formula
A brief review of the latest results of the application of the approximation of the potential of a diatomic molecule by the Morse model function in applied spectroscopy is presented. The functions of the electronic terms of the diatomic molecules BeH, F2, H2, HCl, and Be2 are compared with their two alternative approximations by the Morse function. As a criterion, we used the differences between the original (approximated) term and its Morse models, which, combined with the dependence of the anharmonicity of the original terms on the vibrational quantum number ωexe(v), allowed to formulate some generalizations about the deformation of the form the original term in the approximations. Simulation always leads to an increase in the bond energy in the range of 7-50% and to an increase in the number of vibrational levels. In favorable cases, the contour shape is reproduced with a deviation of no more than 100-200 cm-1 in the lower part of the potential well. Key words: Morse formula, diatomic molecule, anharmonicity, electronic terms, vibrational structure.
- P.M. Morse. Phys. Rev., 34 (1), 57 (1929)
- A. Durmus, A. Ozfidan. Chem. Phys., 543 (11), 111078 (2021). DOI:10.1016/j.chemphys.2020.111078
- I. Amila, M.J. Idrissi, A. Fedoul, S. Sayouri. IOP Conf. Ser.: Mater. Sci. Eng., 1160, 012003 (2021). DOI: 10.1088/1757-899X/11601/012003
- T. Beguv sic, J. Van cek. J. Chem. Phys., 153 (18), 184110 (2020). DOI:10.1063/5.0031216
- M. Al-Raaei, M.S. El-Daher. AIP Advances, 10 (03), 035305 (2020). DOI:10.1063/1.5113593
- R. Lemus. J. Math. Chem., 58 (1), 29 (2020). DOI: 10.1007/s10910-019-01071-8
- L.D. Smith, A.G. Dijkstra. J. Chem. Phys., 151 (16), 164109 (2019). DOI: 10.1063/1.5122896.
- A. Anda, D. Abramavicius, T. Hansen. Phys. Chem. Chem. Phys., 20 (3), 1642 (2018). DOI: 10.1039/c7cp06583c
- M. Micciarellia, R. Conte, J. Suarez, M. Ceotto. J. Chem. Phys., 149 (6), 064115 (2018). DOI: 10.1063/1.5041911
- W.L. Smith. J. Mol. Spectr., 316, 105 (2015). DOI:10.1016/j.jms.2015.06.007
- T. Hirano, M.B.D. Andaloussi, U. Nagashima, P. Jensen. J. Chem. Phys., 141 (9), 094308 (2014). DOI: 10.1063/1.4892895
- A. Bordoni, N. Manini. Int. J. Quant. Chem., 107 (4), 782 (2007). DOI: 10.1002/qua.21189
- I. Nasser, M.S. Abdelmonem, H. Bahlouli, A.D. Alhaidari. J. Phys. B, 40 (21), 4245 (2007). DOI: 10.1088/0953-4075/40/21/011
- M.D. Forlevesi, R.E. de Carvalho, E.F. de Lima. Phys. Rev. E, 104 (1), 014206 (2021). DOI: 10.1103/PhysRevE.104.014206
- J.F. Triana, F.J. Hernandez, F. Herrera. J. Chem. Phys., 152 (23), 234111 (2020). DOI:10.1063/5.0009869
- H.S. Alqannas, S. Abdel-Khalek. Optical \& Quantum Electronics, 51 (2), 50 (2019). DOI: 10.1007/s11082-019-1753-8
- J. Svensmark, O.I. Tolstikhin, L.B. Madsen. Phys. Rev. A, 97 (03), 033408 (2018). DOI: 10.1103/PhysRevA.97.033408
- M.T. Lee, A. Vishnyakov, A.V. Neimark. J. Chem. Theory Comp., 11 (9), 4395 (2015). DOI: 10.1021/acs.jctc.5b00467
- S. Sowlati-Hashjin, C.F. Matta. J. Chem. Phys., 139 (14), 144101 (2013). DOI: 10.1063/1.4820487
- E.F. de Lima, R.E. de Carvalho. Physica D, 241 (20), 1753 (2012). DOI:10.1016/j.physd.2012.08.001
- A. Sethi, S. Keshavamurthy. Mol. Phys., 110 (9-10), 717 (2012). DOI:10.1080/00268976.2012.667166
- V.A. Astapenko, M.S. Romadanovskii. J. Exp. Theor. Phys., 110 (3), 376 (2010). DOI: 10.1134/S1063776110030027
- A. Sethi, S. Keshavamurthy. Phys. Rev. A, 79 (3), 033416 (2009). DOI: 10.1103/PhysRevA.79.033416
- E.F. de Lima, J.E.M. Hornos. J. Phys. A, 38 (7), 815 (2005). DOI:10.1088/0953-4075/38/7/004
- T. Gautie, J.P. Bouchaud, P. Le Doussal. J. Phys. A, 54 (25), 255201 (2021). DOI: https://doi.org/10.1088/1751-8121/abfc7f
- I.S. Gomez, E.S. Santos, O. Abla. Modern Phys. Lett. A, 36 (20), 2150140 (2021). DOI: 10.1142/S0217732321501406
- K. Chabi, A. Boumali. Revista Mexicana de Fisica, 66 (1), 110 (2020). DOI: 10.31349/RevMexFis.66.110
- S.L. Tang, Y. Wang, Q.Y. Xia, X.H. Ju. J. Chem., Article ID 7512737 (2020). https://doi.org/10.1155/2020/7512737
- M. Wan, J. Song, W. Li, L. Gao, W. Fang. J. Comput. Chem., 41 (8), 814 (2020). DOI: 10.1002/jcc.26131
- I.V. Likhachev, V.D. Lakhno. Chem. Phys. Lett., 727, 55 (2019). DOI:1016/j.cplett.2019.04.027
- B.A. Mamedov, H. Cacan. Contributions to Plasma Phys., 59 (9), e201900021 (2019). DOI: 10.1002/ctpp.201900021
- H. Cacan, B.A. Mamedov. J. Chem. Thermodyn., 138, 147 (2019). DOI: 10.1016/j.jct2019.06.015
- V. Rui Zhao, D. Gao, X. Pan, W. Xia, H. Yu, S. Yu, L. Yao. Chem. Phys. Lett., 703, 97 (2018). DOI: 10.1016/j.cplett.2018.05.018
- M. Buchowiecki. Chem. Phys. Lett., 687, 227 (2017). DOI: 10.1016/j.cplett.2017.09.025
- J.M. Hu, J.P. Zhai, F.M. Wu, Z.K. Tang. J. Phys. Chem. B, 114 (49), 16481 (2010).DOI:10.1021/jp1076615
- E. Benassi. Chem. Phys., 515, 323 (2018). https://doi.org/10.1016/j.chemphys.2018.09.005
- O. Orti z, M. Esmann, N.D. Lanzillotti-Kimura. Phys. Rev. B, 100 (8), 085430 (2019). DOI: 10.1103/PhysRevB.100.085430
- S. Kim, S.N. Hood, A. Walsh. Phys. Rev. B, 100 (4), 041202 (2019). DOI: 10.1103/PhysRevB.100.041202
- N.V. Hung, D.Q. Vuon. Modern Phys. Lett. B, 33 (20), 1950237 (2019). DOI: 10.1142/S021798491950237
- T. Morimoto, M. Nagai, Y. Minowa, M. Ashida, Y. Yokotani, Y. Okuyama, Y. Kani. Nature Communications, 10 (1), 1 (2019). Article number 2662. https://doi.org/10.1038/s41467-019-10501-9
- N.B. Duc, V.Q. Tho. Physica B, 552, 1 (2019). DOI: 10.1016/j.physb.2018.09.038
- D.D. Abajingin. Advances in Physics. Theories and Applications, 8, 36 (2012)
- R.S. McEntire, Y.L. Shen. Int. J. Mech. Mater. Des., 4 (4),361 (2008). DOI: 10.1007/s10999-008-9060-8
- K. Mylvaganam, L.C. Zhang. Nanotechnology, 13 (5), 623 (2002). DOI: 10.1088/0957-4484/13/5/316
- G. Kacar, G. With. J. Mol. Liq., 302 (11), 112581 (2020). DOI: 10.1016/j.molliq.2020.112581
- J.N. Scott, J.M. Vanderkooi. Water. 2, 14 (2010). DOI: 10.14294/WATER.2010.1
- A. Matsumoto. Z. Naturforsch. A, 66a (12), 774 (2011). DOI: 10.5560/ZNA.2011-0042
- E. de Oliveira Martins, V.B. Barbosa, G. Weber. Chem. Phys. Lett., 715, 14 (2019). DOI: 10.1016/j.cplett.2018.11.015
- S.V. Goryainov. Physica B, 407 (21), 4233 (2012). DOI: 10.1016/j.physb.2012.06.045
- L. Yang, L. Sun, W.Q. Deng. J. Phys. Chem. A, 122 (6), 1672 (2018). DOI: 10.1021/acs.jpca.7b11252
- A. Vishnyakov, R. Mao, M.T. Lee, A.V. Neimark. J. Chem. Phys., 148 (2), 024108 (2018). DOI: 10.1063/1.4997401
- K.P. Santo, A. Vishnyakov, R. Kumar, A.V. Neimark. Macromolecules, 51 (14), 4987 (2018). DOI: 10.1021/acs.macromol.8b00493
- S. Zdravkovic, A.N. Bugay, A.N. Parkhomenko. Nonlinear Dyn., 90 (4), 2841 (2017). DOI 10.1007/s11071-017-3845-y
- M.T. Lee, A. Vishnyakov, A.V. Neimark. J. Chem. Phys., 144 (1), 014902 (2016). DOI: 10.1063/1.4938271
- M.A. Boyer, A.B. McCoy. J. Chem. Phys., 156 (5), 054107 (2022). DOI: 10.1063/5.0080892
- A. Vishnyakov, D.S. Talaga, A.V. Neimark. J. Phys. Chem. Lett., 3 (21), 3081 (2012). DOI: 10.1021/jz301277b
- A. Belfakir, E.M.F. Curado, Y. Hassouni. Annals of Physics, 423, 168331 (2020). DOI: 10.1016/j.aop.2020.168331
- T.C. Lim, J.A. Dawson. Mol. Phys., 116 (9), 1127 (2018). DOI: /10.1080/00268976.2017.1407003
- T. Urbanczyk, J. Koperski. Chem. Phys. Lett., 640, 82 (2015). DOI: 10.1016/j.cplett.2015.10.013
- T. Urbanczyk, M. Strojecki, A. Pashov, A. Kedziorski, P. Zuchowski, J. Koperski. J. Phys. Conf. Ser., 810, 012018 (2017). DOI: 10.1088/1742-6596/810/1/012018
- S. Xantheas, J.C. Werhahn. J. Chem. Phys., 141 (6), 064117 (2014). DOI: 10.1063/1.4891819
- P.Q. Wang, L.H. Zhang, C.S. Jia, J.Y. Liu. J. Mol. Spectr., 274, 5 (2012). DOI: 10.1016/j.jms.2012.03.005
- M. Angelova, V. Hussin. J. Phys., A, 41 (7), 304016 (2008). DOI: 10.1088/1751-8113/45/24/244007
- A. Leonard, S. Deffner. Chem. Phys., 446, 18 (2015). DOI: 10.1016/j.chemphys.2014.10.020
- A.M. Desai, N. Mesquita, V. Fernandes. Physica Scripta, 95 (8), 085401 (2020). DOI: 10.1088/1402-4896/ab9bdc
- L. Yang, L. Sun, W.Q. Deng. J. Phys. Chem. A, 123 (36), 7847 (2019). DOI: 10.1021/acs.jpca.9b02055
- C.A. Latorre, J.P. Ewen, C. Gattinoni, D. Dini. J. Phys. Chem. B, 123 (31), 6870 (2019). DOI: 10.1021/acs.jpcb.9b02925
- A.C. Lasaga, T. Otake, Y. Watanabe, H. Ohmoto. Earth and Planetary Science Letters, 268 (1-2), 225 (2008). DOI: 10.1016/j.epsl.2008.01.016
- M.B. Yeamin, N. Faginas-Lago, M. Alberti, I.G. Cuesta, J. Sanchez-Mari n, A.M.J. Sanchez de Meras. RSC Advances, 4 (97), 54447 (2014). DOI: 10.1039/c4ra08487j
- J. Recamier, W.L. Mochan. Mol. Phys., 107 (14), 1467 (2009). DOI: /10.1080/00268970902942268
- Y. Shim, H.J. Kim. J. Chem. Phys., 125 (2), 024507 (2006). DOI : 2060/10.1063/1.2206579
- M.L. Strekalov. Chem. Phys. Lett., 419 (1-3), 1 (2006). DOI: 10.1016/j.cplett.2005.11.042
- A. Chenaghlou, S. Aghaei, N.G. Niari. Eur. Phys. J. D, 75 (4) 139 (2021). DOI:10.1140/epjd/s10053-021-00156-x
- A.A. Medvedev, V.V. Meshkov, A.V. Stolyarov, M.C. Heaven. Phys. Chem. Chem. Phys., 20 (40), 25974 (2018). DOI: 10/1039/c8cp04397c
- J. Provazza, R. Tempelaar, D.F. Coker. J. Chem. Phys., 155 (1), 014108 (2021). DOI: 10.1063/5.0053735
- M.D. Garcia, A.S. de Castro, P. Alberto, L.B. Castro. Physics Letters A, 381 (25-26), 2050 (2017). DOI: 10.1063/5.0031216
- P. Bornhauser, M. Beck, Q. Zhang, G. Knopp, R. Marquardt, C. Gourlaouen, P.P. Radi. J. Chem. Phys., 153 (24), 244305 (2020). DOI: 10.1063/5.0028908
- R.G. Pingak, A.Z. Johannes, Z.S. Ngara, M. Bukit, F. Nitti, D. Tambaru, M.Z. Ndii. Results in Chemistry, 3 (1), 100204 (2021). DOI: 10.1016/j.rechem.2021.100204
- A.Z. Li, W.G. Harter. Chem. Phys. Lett., 633, 208 (2015). DOI: 10.1016/j.cplett.2015.05.035
- D. Mikulski, K. Eder, J. Konarski. J. Math. Chem., 52 (6), 1552 (2014). DOI: 10.1007/s10910-014-0335-z
- S.V. Krasnoshchekov, X. Chang. Int. Rev. Phys. Chem., 38 (1), 63 (2019). DOI: 10.1080/0144235X.2019.1593583
- S.B. Bayram, M.V. Freamat. Amer. J. Phys., 80 (8), 663 (2012). doi: 10.1119/1.4722793
- J.C. Williamson. J. Chem. Educ., 84 (8), 1355 (2007). Also Suppl. Mat. DOI: 10.1021/ed084p1355
- J. Zuniga, A. Bastida, A. Requena. J. Chem. Educ., 85 (12), 1675 (2008). DOI: 10.1021/ed085p1675
- K.F. Lim, W.F. Coleman. J. Chem. Educ., 82 (8), 1263 (2005). DOI: 10.1021/ed082p1263.2
- J.D. Gaynor, A.M. Wetterer, R.M. Cochran, E.J. Valente, S.G. Mayer. J. Chem. Educ., 92 (6), 1081 (2015). DOI: 10.1021/ed5004965
- P.D. Cooper. J. Chem. Educ., 87 (7), 687 (2010). DOI: 10.1021/ed100287r
- S. Ghosh, M.K. Dixit, S.P. Bhattacharyya, B.L. Tembe. J. Chem. Educ., 90 (11), 1463 (2013). DOI: 10.1021/ed4002199
- J.C. Williamson, T.S. Kuntzleman, R.A. Kafader. J. Chem. Educ., 90 (3), 383 (2013). DOI: 10.1021/ed300455n
- L. Pauling, E.B. Wilson. Introduction to Quantum Mechanics With Applications to Chemistry, McGraw Hill Book Company, New York, 1935
- H.B. Dunford. Elements of Diatomic Molecular Spectra, Addison-Wesley Publ. Co, Reading, Massachusetts, 1968
- M. Diem. Quantum Mechanical Foundations of Molecular Spectroscopy, 1st Ed., Wiley-VCH, Weincheim, Germany, 2021
- G.S. Denisov, I.G. Denisov. Spectr. Acta A, 262 (12), 120111 (2021). DOI: 10.1016/j.saa.2021.120111
- A.A. Zavitsas. J. Mol. Spectr., 236 (2), 168 (2006). DOI: 10.1016/j.jms.2006.01.008
- H.Y. Abdullah. Bull. Mater. Sci., 42 (142) 1 (2019). DOI: 10.1007/s12034-019-1824-2
- M. A. Yeliashevich. Molekulyarnaya spektroskopiya, KOMOKniga, 2-e izd. 2007. (in Russian)
- G.S. Denisov, K.G. Tokhadze. Opt. i spectr., 129 (11), 1375 (2021). DOI: 10.21883/OS.2021.11.51635.2483-21
- K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules, Van Nostrand Reynolds, New York, 1979
- CRC Handbook of chemistry and physics, Ed. David R. Lide, 87th ed, Section 9, Spectroscopic Constants of Diatomic Molecules, pp.9-82, CRC Press, Boca Raton, FL, 2006
- R.J. Le Roy. Determining Equilibrium Structures and Potential Energy Functions for Diatomic Molecules, Ch. 6, in: Equilibrium Molecular Structures, Eds: J. Demaison, J. E. Boggs, A. G. Csaszar. CRC Press, 2011, p. 159-204
- R.J. Le Roy, C.C. Haugen, J. Tao, H. Li. Mol. Phys., 109 (3), 435 (2011). DOI: 10.1080/00268976.2010.52734
- J. Koput. J. Chem. Phys., 135 (24), 244308 (2011). DOI: 10.1063/1.3671610
- R.J. Le Roy, D.R.T. Appadoo, R. Colin, P.F. Bernath. J. Molec. Specr., 236 (2), 178 (2006). DOI: 10.1016/j.jms.2006.01.010
- L. Bytautas, N. Matsunaga, T. Nagata, M.S. Gordon, K. Ruetenberg. J. Chem. Phys., 127 (20), 204301 (2007). DOI: 10.1063/1.2801989
- S. Chattopadhyay, U.S. Mahapatra, R.K. Chaudhuri. Mol. Phys., 112 (20), 2720 (2014). DOI: 10.1080/00268976.2014.906675
- L. Bytautas, N. Matsunaga, T. Nagata, M.S. Gordon, K. Ruetenberg. J. Chem. Phys., 127 (20), 204313 (2007). DOI: 10.1063/1.2805392
- E.A. Colbourn, M. Dagenais, A.E. Douglas, J.W. Raymonda. Can. J. Phys., 54 (13), 1343 (1976)
- G. Herzberg. Molecular Spectra and Molecular Structure I. Diatomic Molecules, New York, 1939
- S. Flugge, Practical Quantum Mechanics, Springer, NY, 1974, v. 1, p. 182
- B.W. Moore, Basic Physical Chemistry, Prentice-Hall, Englewood Cliffs, N.J., 1983, p. 589
- S.K. Dogra, H.S. Randhava, Molecular Spectroscopy, McGraw-Hill, 2012, p. 94-100
- R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and Optical Diagnostics of Gases, Springer, 2016, p. 52
- L. Wolniewicz. J. Chem. Phys., 99 (3), 1851 (1993). DOI: 10.1063/1.465303
- J.A. Coxon, P.G. Hadjigeorgiou. J. Quant. Spectr. Rad. Trans., 151,133 (2015). DOI: 10.1016/j.jqsrt.2014.08.028
- J.M. Merritt, V.E. Bondybey, M.C. Heaven. Science, 324 (5934), 1548 (2009). DOI: 10.1126/science.1174326
- M. Lesiuk, M. Przybytek, J.G. Balcerzak, M. Musial, R. Moszynski. J. Chem. Theory Comput., 15 (4), 2470 (2019). DOI: 10.1021/acs.jctc.8b00845
- A.V. Mitin. Chem. Phys. Lett., 682, 30 (2017). DOI: 10.1016/j.cplett.2017.05.071
- A.B. McCoy, Chem. Phys. Lett., 501 (4-6), 603 (2011). DOI: 10.1016/j.cplett.2010.11.065
- R.T. Birge, H. Sponer. Phys. Rev., 28 (2), 259 (1926)
- A.G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules. 2d Ed. Chapman \& Hall, L. 1968
- I.G. Kaplan, Intermolecular Interactions, Wiley, Chichester, 2006. P. 191
- M.N. Angelova, V.K. Dobrev, A. Frank. Eur. Phys. J. D, 31 (1), 27 (2004) DOI: 10.1140/epjd/e2004-00111-6
- G. Herzberg, L.L. Howe. Can. J. Phys., 37 (5), 636 (1959).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.