Empirical quality criteria for the approximation of the electronic term of a diatomic molecule by the Morse formula
Denisov G. S.1
1St. Petersburg State University, St. Petersburg, Russia
Email: g.denisov@spbu.ru

PDF
A brief review of the latest results of the application of the approximation of the potential of a diatomic molecule by the Morse model function in applied spectroscopy is presented. The functions of the electronic terms of the diatomic molecules BeH, F2, H2, HCl, and Be2 are compared with their two alternative approximations by the Morse function. As a criterion, we used the differences between the original (approximated) term and its Morse models, which, combined with the dependence of the anharmonicity of the original terms on the vibrational quantum number ωexe(v), allowed to formulate some generalizations about the deformation of the form the original term in the approximations. Simulation always leads to an increase in the bond energy in the range of 7-50% and to an increase in the number of vibrational levels. In favorable cases, the contour shape is reproduced with a deviation of no more than 100-200 cm-1 in the lower part of the potential well. Key words: Morse formula, diatomic molecule, anharmonicity, electronic terms, vibrational structure.
  1. P.M. Morse. Phys. Rev., 34 (1), 57 (1929)
  2. A. Durmus, A. Ozfidan. Chem. Phys., 543 (11), 111078 (2021). DOI:10.1016/j.chemphys.2020.111078
  3. I. Amila, M.J. Idrissi, A. Fedoul, S. Sayouri. IOP Conf. Ser.: Mater. Sci. Eng., 1160, 012003 (2021). DOI: 10.1088/1757-899X/11601/012003
  4. T. Beguv sic, J. Van cek. J. Chem. Phys., 153 (18), 184110 (2020). DOI:10.1063/5.0031216
  5. M. Al-Raaei, M.S. El-Daher. AIP Advances, 10 (03), 035305 (2020). DOI:10.1063/1.5113593
  6. R. Lemus. J. Math. Chem., 58 (1), 29 (2020). DOI: 10.1007/s10910-019-01071-8
  7. L.D. Smith, A.G. Dijkstra. J. Chem. Phys., 151 (16), 164109 (2019). DOI: 10.1063/1.5122896.
  8. A. Anda, D. Abramavicius, T. Hansen. Phys. Chem. Chem. Phys., 20 (3), 1642 (2018). DOI: 10.1039/c7cp06583c
  9. M. Micciarellia, R. Conte, J. Suarez, M. Ceotto. J. Chem. Phys., 149 (6), 064115 (2018). DOI: 10.1063/1.5041911
  10. W.L. Smith. J. Mol. Spectr., 316, 105 (2015). DOI:10.1016/j.jms.2015.06.007
  11. T. Hirano, M.B.D. Andaloussi, U. Nagashima, P. Jensen. J. Chem. Phys., 141 (9), 094308 (2014). DOI: 10.1063/1.4892895
  12. A. Bordoni, N. Manini. Int. J. Quant. Chem., 107 (4), 782 (2007). DOI: 10.1002/qua.21189
  13. I. Nasser, M.S. Abdelmonem, H. Bahlouli, A.D. Alhaidari. J. Phys. B, 40 (21), 4245 (2007). DOI: 10.1088/0953-4075/40/21/011
  14. M.D. Forlevesi, R.E. de Carvalho, E.F. de Lima. Phys. Rev. E, 104 (1), 014206 (2021). DOI: 10.1103/PhysRevE.104.014206
  15. J.F. Triana, F.J. Hernandez, F. Herrera. J. Chem. Phys., 152 (23), 234111 (2020). DOI:10.1063/5.0009869
  16. H.S. Alqannas, S. Abdel-Khalek. Optical \& Quantum Electronics, 51 (2), 50 (2019). DOI: 10.1007/s11082-019-1753-8
  17. J. Svensmark, O.I. Tolstikhin, L.B. Madsen. Phys. Rev. A, 97 (03), 033408 (2018). DOI: 10.1103/PhysRevA.97.033408
  18. M.T. Lee, A. Vishnyakov, A.V. Neimark. J. Chem. Theory Comp., 11 (9), 4395 (2015). DOI: 10.1021/acs.jctc.5b00467
  19. S. Sowlati-Hashjin, C.F. Matta. J. Chem. Phys., 139 (14), 144101 (2013). DOI: 10.1063/1.4820487
  20. E.F. de Lima, R.E. de Carvalho. Physica D, 241 (20), 1753 (2012). DOI:10.1016/j.physd.2012.08.001
  21. A. Sethi, S. Keshavamurthy. Mol. Phys., 110 (9-10), 717 (2012). DOI:10.1080/00268976.2012.667166
  22. V.A. Astapenko, M.S. Romadanovskii. J. Exp. Theor. Phys., 110 (3), 376 (2010). DOI: 10.1134/S1063776110030027
  23. A. Sethi, S. Keshavamurthy. Phys. Rev. A, 79 (3), 033416 (2009). DOI: 10.1103/PhysRevA.79.033416
  24. E.F. de Lima, J.E.M. Hornos. J. Phys. A, 38 (7), 815 (2005). DOI:10.1088/0953-4075/38/7/004
  25. T. Gautie, J.P. Bouchaud, P. Le Doussal. J. Phys. A, 54 (25), 255201 (2021). DOI: https://doi.org/10.1088/1751-8121/abfc7f
  26. I.S. Gomez, E.S. Santos, O. Abla. Modern Phys. Lett. A, 36 (20), 2150140 (2021). DOI: 10.1142/S0217732321501406
  27. K. Chabi, A. Boumali. Revista Mexicana de Fisica, 66 (1), 110 (2020). DOI: 10.31349/RevMexFis.66.110
  28. S.L. Tang, Y. Wang, Q.Y. Xia, X.H. Ju. J. Chem., Article ID 7512737 (2020). https://doi.org/10.1155/2020/7512737
  29. M. Wan, J. Song, W. Li, L. Gao, W. Fang. J. Comput. Chem., 41 (8), 814 (2020). DOI: 10.1002/jcc.26131
  30. I.V. Likhachev, V.D. Lakhno. Chem. Phys. Lett., 727, 55 (2019). DOI:1016/j.cplett.2019.04.027
  31. B.A. Mamedov, H. Cacan. Contributions to Plasma Phys., 59 (9), e201900021 (2019). DOI: 10.1002/ctpp.201900021
  32. H. Cacan, B.A. Mamedov. J. Chem. Thermodyn., 138, 147 (2019). DOI: 10.1016/j.jct2019.06.015
  33. V. Rui Zhao, D. Gao, X. Pan, W. Xia, H. Yu, S. Yu, L. Yao. Chem. Phys. Lett., 703, 97 (2018). DOI: 10.1016/j.cplett.2018.05.018
  34. M. Buchowiecki. Chem. Phys. Lett., 687, 227 (2017). DOI: 10.1016/j.cplett.2017.09.025
  35. J.M. Hu, J.P. Zhai, F.M. Wu, Z.K. Tang. J. Phys. Chem. B, 114 (49), 16481 (2010).DOI:10.1021/jp1076615
  36. E. Benassi. Chem. Phys., 515, 323 (2018). https://doi.org/10.1016/j.chemphys.2018.09.005
  37. O. Orti z, M. Esmann, N.D. Lanzillotti-Kimura. Phys. Rev. B, 100 (8), 085430 (2019). DOI: 10.1103/PhysRevB.100.085430
  38. S. Kim, S.N. Hood, A. Walsh. Phys. Rev. B, 100 (4), 041202 (2019). DOI: 10.1103/PhysRevB.100.041202
  39. N.V. Hung, D.Q. Vuon. Modern Phys. Lett. B, 33 (20), 1950237 (2019). DOI: 10.1142/S021798491950237
  40. T. Morimoto, M. Nagai, Y. Minowa, M. Ashida, Y. Yokotani, Y. Okuyama, Y. Kani. Nature Communications, 10 (1), 1 (2019). Article number 2662. https://doi.org/10.1038/s41467-019-10501-9
  41. N.B. Duc, V.Q. Tho. Physica B, 552, 1 (2019). DOI: 10.1016/j.physb.2018.09.038
  42. D.D. Abajingin. Advances in Physics. Theories and Applications, 8, 36 (2012)
  43. R.S. McEntire, Y.L. Shen. Int. J. Mech. Mater. Des., 4 (4),361 (2008). DOI: 10.1007/s10999-008-9060-8
  44. K. Mylvaganam, L.C. Zhang. Nanotechnology, 13 (5), 623 (2002). DOI: 10.1088/0957-4484/13/5/316
  45. G. Kacar, G. With. J. Mol. Liq., 302 (11), 112581 (2020). DOI: 10.1016/j.molliq.2020.112581
  46. J.N. Scott, J.M. Vanderkooi. Water. 2, 14 (2010). DOI: 10.14294/WATER.2010.1
  47. A. Matsumoto. Z. Naturforsch. A, 66a (12), 774 (2011). DOI: 10.5560/ZNA.2011-0042
  48. E. de Oliveira Martins, V.B. Barbosa, G. Weber. Chem. Phys. Lett., 715, 14 (2019). DOI: 10.1016/j.cplett.2018.11.015
  49. S.V. Goryainov. Physica B, 407 (21), 4233 (2012). DOI: 10.1016/j.physb.2012.06.045
  50. L. Yang, L. Sun, W.Q. Deng. J. Phys. Chem. A, 122 (6), 1672 (2018). DOI: 10.1021/acs.jpca.7b11252
  51. A. Vishnyakov, R. Mao, M.T. Lee, A.V. Neimark. J. Chem. Phys., 148 (2), 024108 (2018). DOI: 10.1063/1.4997401
  52. K.P. Santo, A. Vishnyakov, R. Kumar, A.V. Neimark. Macromolecules, 51 (14), 4987 (2018). DOI: 10.1021/acs.macromol.8b00493
  53. S. Zdravkovic, A.N. Bugay, A.N. Parkhomenko. Nonlinear Dyn., 90 (4), 2841 (2017). DOI 10.1007/s11071-017-3845-y
  54. M.T. Lee, A. Vishnyakov, A.V. Neimark. J. Chem. Phys., 144 (1), 014902 (2016). DOI: 10.1063/1.4938271
  55. M.A. Boyer, A.B. McCoy. J. Chem. Phys., 156 (5), 054107 (2022). DOI: 10.1063/5.0080892
  56. A. Vishnyakov, D.S. Talaga, A.V. Neimark. J. Phys. Chem. Lett., 3 (21), 3081 (2012). DOI: 10.1021/jz301277b
  57. A. Belfakir, E.M.F. Curado, Y. Hassouni. Annals of Physics, 423, 168331 (2020). DOI: 10.1016/j.aop.2020.168331
  58. T.C. Lim, J.A. Dawson. Mol. Phys., 116 (9), 1127 (2018). DOI: /10.1080/00268976.2017.1407003
  59. T. Urbanczyk, J. Koperski. Chem. Phys. Lett., 640, 82 (2015). DOI: 10.1016/j.cplett.2015.10.013
  60. T. Urbanczyk, M. Strojecki, A. Pashov, A. Kedziorski, P. Zuchowski, J. Koperski. J. Phys. Conf. Ser., 810, 012018 (2017). DOI: 10.1088/1742-6596/810/1/012018
  61. S. Xantheas, J.C. Werhahn. J. Chem. Phys., 141 (6), 064117 (2014). DOI: 10.1063/1.4891819
  62. P.Q. Wang, L.H. Zhang, C.S. Jia, J.Y. Liu. J. Mol. Spectr., 274, 5 (2012). DOI: 10.1016/j.jms.2012.03.005
  63. M. Angelova, V. Hussin. J. Phys., A, 41 (7), 304016 (2008). DOI: 10.1088/1751-8113/45/24/244007
  64. A. Leonard, S. Deffner. Chem. Phys., 446, 18 (2015). DOI: 10.1016/j.chemphys.2014.10.020
  65. A.M. Desai, N. Mesquita, V. Fernandes. Physica Scripta, 95 (8), 085401 (2020). DOI: 10.1088/1402-4896/ab9bdc
  66. L. Yang, L. Sun, W.Q. Deng. J. Phys. Chem. A, 123 (36), 7847 (2019). DOI: 10.1021/acs.jpca.9b02055
  67. C.A. Latorre, J.P. Ewen, C. Gattinoni, D. Dini. J. Phys. Chem. B, 123 (31), 6870 (2019). DOI: 10.1021/acs.jpcb.9b02925
  68. A.C. Lasaga, T. Otake, Y. Watanabe, H. Ohmoto. Earth and Planetary Science Letters, 268 (1-2), 225 (2008). DOI: 10.1016/j.epsl.2008.01.016
  69. M.B. Yeamin, N. Faginas-Lago, M. Alberti, I.G. Cuesta, J. Sanchez-Mari n, A.M.J. Sanchez de Meras. RSC Advances, 4 (97), 54447 (2014). DOI: 10.1039/c4ra08487j
  70. J. Recamier, W.L. Mochan. Mol. Phys., 107 (14), 1467 (2009). DOI: /10.1080/00268970902942268
  71. Y. Shim, H.J. Kim. J. Chem. Phys., 125 (2), 024507 (2006). DOI : 2060/10.1063/1.2206579
  72. M.L. Strekalov. Chem. Phys. Lett., 419 (1-3), 1 (2006). DOI: 10.1016/j.cplett.2005.11.042
  73. A. Chenaghlou, S. Aghaei, N.G. Niari. Eur. Phys. J. D, 75 (4) 139 (2021). DOI:10.1140/epjd/s10053-021-00156-x
  74. A.A. Medvedev, V.V. Meshkov, A.V. Stolyarov, M.C. Heaven. Phys. Chem. Chem. Phys., 20 (40), 25974 (2018). DOI: 10/1039/c8cp04397c
  75. J. Provazza, R. Tempelaar, D.F. Coker. J. Chem. Phys., 155 (1), 014108 (2021). DOI: 10.1063/5.0053735
  76. M.D. Garcia, A.S. de Castro, P. Alberto, L.B. Castro. Physics Letters A, 381 (25-26), 2050 (2017). DOI: 10.1063/5.0031216
  77. P. Bornhauser, M. Beck, Q. Zhang, G. Knopp, R. Marquardt, C. Gourlaouen, P.P. Radi. J. Chem. Phys., 153 (24), 244305 (2020). DOI: 10.1063/5.0028908
  78. R.G. Pingak, A.Z. Johannes, Z.S. Ngara, M. Bukit, F. Nitti, D. Tambaru, M.Z. Ndii. Results in Chemistry, 3 (1), 100204 (2021). DOI: 10.1016/j.rechem.2021.100204
  79. A.Z. Li, W.G. Harter. Chem. Phys. Lett., 633, 208 (2015). DOI: 10.1016/j.cplett.2015.05.035
  80. D. Mikulski, K. Eder, J. Konarski. J. Math. Chem., 52 (6), 1552 (2014). DOI: 10.1007/s10910-014-0335-z
  81. S.V. Krasnoshchekov, X. Chang. Int. Rev. Phys. Chem., 38 (1), 63 (2019). DOI: 10.1080/0144235X.2019.1593583
  82. S.B. Bayram, M.V. Freamat. Amer. J. Phys., 80 (8), 663 (2012). doi: 10.1119/1.4722793
  83. J.C. Williamson. J. Chem. Educ., 84 (8), 1355 (2007). Also Suppl. Mat. DOI: 10.1021/ed084p1355
  84. J. Zuniga, A. Bastida, A. Requena. J. Chem. Educ., 85 (12), 1675 (2008). DOI: 10.1021/ed085p1675
  85. K.F. Lim, W.F. Coleman. J. Chem. Educ., 82 (8), 1263 (2005). DOI: 10.1021/ed082p1263.2
  86. J.D. Gaynor, A.M. Wetterer, R.M. Cochran, E.J. Valente, S.G. Mayer. J. Chem. Educ., 92 (6), 1081 (2015). DOI: 10.1021/ed5004965
  87. P.D. Cooper. J. Chem. Educ., 87 (7), 687 (2010). DOI: 10.1021/ed100287r
  88. S. Ghosh, M.K. Dixit, S.P. Bhattacharyya, B.L. Tembe. J. Chem. Educ., 90 (11), 1463 (2013). DOI: 10.1021/ed4002199
  89. J.C. Williamson, T.S. Kuntzleman, R.A. Kafader. J. Chem. Educ., 90 (3), 383 (2013). DOI: 10.1021/ed300455n
  90. L. Pauling, E.B. Wilson. Introduction to Quantum Mechanics With Applications to Chemistry, McGraw Hill Book Company, New York, 1935
  91. H.B. Dunford. Elements of Diatomic Molecular Spectra, Addison-Wesley Publ. Co, Reading, Massachusetts, 1968
  92. M. Diem. Quantum Mechanical Foundations of Molecular Spectroscopy, 1st Ed., Wiley-VCH, Weincheim, Germany, 2021
  93. G.S. Denisov, I.G. Denisov. Spectr. Acta A, 262 (12), 120111 (2021). DOI: 10.1016/j.saa.2021.120111
  94. A.A. Zavitsas. J. Mol. Spectr., 236 (2), 168 (2006). DOI: 10.1016/j.jms.2006.01.008
  95. H.Y. Abdullah. Bull. Mater. Sci., 42 (142) 1 (2019). DOI: 10.1007/s12034-019-1824-2
  96. M. A. Yeliashevich. Molekulyarnaya spektroskopiya, KOMOKniga, 2-e izd. 2007. (in Russian)
  97. G.S. Denisov, K.G. Tokhadze. Opt. i spectr., 129 (11), 1375 (2021). DOI: 10.21883/OS.2021.11.51635.2483-21
  98. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules, Van Nostrand Reynolds, New York, 1979
  99. CRC Handbook of chemistry and physics, Ed. David R. Lide, 87th ed, Section 9, Spectroscopic Constants of Diatomic Molecules, pp.9-82, CRC Press, Boca Raton, FL, 2006
  100. R.J. Le Roy. Determining Equilibrium Structures and Potential Energy Functions for Diatomic Molecules, Ch. 6, in: Equilibrium Molecular Structures, Eds: J. Demaison, J. E. Boggs, A. G. Csaszar. CRC Press, 2011, p. 159-204
  101. R.J. Le Roy, C.C. Haugen, J. Tao, H. Li. Mol. Phys., 109 (3), 435 (2011). DOI: 10.1080/00268976.2010.52734
  102. J. Koput. J. Chem. Phys., 135 (24), 244308 (2011). DOI: 10.1063/1.3671610
  103. R.J. Le Roy, D.R.T. Appadoo, R. Colin, P.F. Bernath. J. Molec. Specr., 236 (2), 178 (2006). DOI: 10.1016/j.jms.2006.01.010
  104. L. Bytautas, N. Matsunaga, T. Nagata, M.S. Gordon, K. Ruetenberg. J. Chem. Phys., 127 (20), 204301 (2007). DOI: 10.1063/1.2801989
  105. S. Chattopadhyay, U.S. Mahapatra, R.K. Chaudhuri. Mol. Phys., 112 (20), 2720 (2014). DOI: 10.1080/00268976.2014.906675
  106. L. Bytautas, N. Matsunaga, T. Nagata, M.S. Gordon, K. Ruetenberg. J. Chem. Phys., 127 (20), 204313 (2007). DOI: 10.1063/1.2805392
  107. E.A. Colbourn, M. Dagenais, A.E. Douglas, J.W. Raymonda. Can. J. Phys., 54 (13), 1343 (1976)
  108. G. Herzberg. Molecular Spectra and Molecular Structure I. Diatomic Molecules, New York, 1939
  109. S. Flugge, Practical Quantum Mechanics, Springer, NY, 1974, v. 1, p. 182
  110. B.W. Moore, Basic Physical Chemistry, Prentice-Hall, Englewood Cliffs, N.J., 1983, p. 589
  111. S.K. Dogra, H.S. Randhava, Molecular Spectroscopy, McGraw-Hill, 2012, p. 94-100
  112. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and Optical Diagnostics of Gases, Springer, 2016, p. 52
  113. L. Wolniewicz. J. Chem. Phys., 99 (3), 1851 (1993). DOI: 10.1063/1.465303
  114. J.A. Coxon, P.G. Hadjigeorgiou. J. Quant. Spectr. Rad. Trans., 151,133 (2015). DOI: 10.1016/j.jqsrt.2014.08.028
  115. J.M. Merritt, V.E. Bondybey, M.C. Heaven. Science, 324 (5934), 1548 (2009). DOI: 10.1126/science.1174326
  116. M. Lesiuk, M. Przybytek, J.G. Balcerzak, M. Musial, R. Moszynski. J. Chem. Theory Comput., 15 (4), 2470 (2019). DOI: 10.1021/acs.jctc.8b00845
  117. A.V. Mitin. Chem. Phys. Lett., 682, 30 (2017). DOI: 10.1016/j.cplett.2017.05.071
  118. A.B. McCoy, Chem. Phys. Lett., 501 (4-6), 603 (2011). DOI: 10.1016/j.cplett.2010.11.065
  119. R.T. Birge, H. Sponer. Phys. Rev., 28 (2), 259 (1926)
  120. A.G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules. 2d Ed. Chapman \& Hall, L. 1968
  121. I.G. Kaplan, Intermolecular Interactions, Wiley, Chichester, 2006. P. 191
  122. M.N. Angelova, V.K. Dobrev, A. Frank. Eur. Phys. J. D, 31 (1), 27 (2004) DOI: 10.1140/epjd/e2004-00111-6
  123. G. Herzberg, L.L. Howe. Can. J. Phys., 37 (5), 636 (1959).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru