Focusing of the surface plasmon wave on the nanoapex of a scanning metal microtip near a plane-layered structure
Petrin A. B.
11Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: a_petrin@mail.ru
A generalized method of mirror reflections of electrostatics for a point charge located near a flat-layered structure is formulated and proved. The method is generalized to the case of an arbitrary system of charges. It is shown in detail how to apply the obtained method to finding the focal distribution of the electric field in the vicinity of the nanoapex of a metal micropoint located near the flat-layered structure, which is obtained when a surface plasmon TM wave converges to the nanoapex. The penetration of the field into the area of the surface layer of the flat-layered structure (photoresist) with a size of the order of the tip rounding radius is demonstrated. Keywords: nanofocusing, surface plasmons, optical sensors.
- F. De Angelis, G. Das, P. Candeloro et al. Nature Nanotech., 5, 67 (2010). DOI:10.1038/nnano.2009.348
- H.G. Frey, F. Keilmann, A. Kriele, R. Guckenberger. Appl. Phys. Lett., 81, 5030 (2002). DOI: 10.1063/1.1530736
- I. Stockman. Phys. Rev. Lett., 93, 137404 (2004). DOI: 10.1103/PhysRevLett.93.137404
- A.B. Petrin. High Temp., 50, 15 (2012). DOI: 10.1134/S0018151X12010129
- A. Giugni, M. Allione, B. Torre et al. J. Opt., 16 (11), 114003 (2014). DOI: 10.1088/2040-8978/16/11/114003
- A. Giugni, B. Torre, A. Toma et al. Nature Nanotech., 8 (11), 845 (2013). DOI:10.1038/nnano.2013.207
- A.B. Petrin. Uspekhi prikladnoi fiziki, 3 (3), 236 (2015). (in Russian),
- A.B. Petrin. Quantum Electronics, 45 (7), 658 (2015). DOI: 10.1070/QE2015v045n07ABEH015713
- W.C. Chew. Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995)
- A.G. Kyurkchan, S.A. Manenkov. Radiotekhnika i elektronika. (in Russian), 65 (7), 644 (2020)
- A.B. Petrin. Opt. Spectrosc., 128, 1809 (2020). DOI:10.1134/S0030400X20110193
- A.B. Petrin. Opt. i spektr., 128 (12), 1874 (2020). (in Russian). DOI: 10.21883/EOS.2022.09.54838.3636-22
- A.B. Petrin. ZhETF, 159 (1), 35 (2021) (in Russian). DOI: 10.31857/S004445102101003X [A. B. Petrin. J. Exp. Theor. Phys., 132, 27 (2021). DOI: 10.1134/S1063776120120055]
- R.W.P. King, G.S. Smith. Antennas in Matter (M.I.T. Press, Cambridge MA, 1981)
- R.W.P. King. IEEE Trans. Microwave Theory Tech., 36 (6), 1080 (1988). DOI: 10.1109/22.3635
- A.B. Petrin. Opt. Spectrosc., 129, 72 (2021). DOI:10.1134/S0030400X21010161
- D.V. Sivukhin. Obshchiy kurs fiziki, III "Elektrichestvo" (Nauka, Moskva, 1977). (in Russian)
- A.B. Petrin. Uspekhi prikladnoi fiziki, 4 (4), 326 (2016). (in Russian)
- A.B. Petrin. High Temperature, 57 (1), 17 (2019). DOI:10.1134%2FS0018151X1901019X
- A.B. Petrin. Quantum Electronics, 45 (7), 658 (2015). DOI: 10.1070/QE2015v045n07ABEH015713
- A.B. Petrin. Prikladnaya fizika, N 1, 11 (2016). (in Russian)
- A. Ango. Matematika dlya elektro- i radioinzhenerov (Nauka, Moskva, 1967).(in Russian)
- A.F. Nikiforov, V.B. Uvarov. Spetsialnyye funktsii matematicheskoy fiziki (Nauka. Glavnaya redakciya fiziko-matematicheskoy literatury, Moskva, 1984). (in Russian)
- Chislennye metody teorii difrakcii (Matematika. Novoe v zarubezhnoy nauke. Vyp. 29): Sbornik statei. Per. s angl., (Mir, Moskva, 1982).(in Russian)
- L. Novotny, B. Kheht. Osnovy nanooptiki, pod red. Samarceva V.V. (Fizmatlit, Moskva, 2009).(in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.