Focusing of the surface plasmon wave on the nanoapex of a scanning metal microtip near a plane-layered structure
Petrin A. B. 1
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: a_petrin@mail.ru

PDF
A generalized method of mirror reflections of electrostatics for a point charge located near a flat-layered structure is formulated and proved. The method is generalized to the case of an arbitrary system of charges. It is shown in detail how to apply the obtained method to finding the focal distribution of the electric field in the vicinity of the nanoapex of a metal micropoint located near the flat-layered structure, which is obtained when a surface plasmon TM wave converges to the nanoapex. The penetration of the field into the area of the surface layer of the flat-layered structure (photoresist) with a size of the order of the tip rounding radius is demonstrated. Keywords: nanofocusing, surface plasmons, optical sensors.
  1. F. De Angelis, G. Das, P. Candeloro et al. Nature Nanotech., 5, 67 (2010). DOI:10.1038/nnano.2009.348
  2. H.G. Frey, F. Keilmann, A. Kriele, R. Guckenberger. Appl. Phys. Lett., 81, 5030 (2002). DOI: 10.1063/1.1530736
  3. I. Stockman. Phys. Rev. Lett., 93, 137404 (2004). DOI: 10.1103/PhysRevLett.93.137404
  4. A.B. Petrin. High Temp., 50, 15 (2012). DOI: 10.1134/S0018151X12010129
  5. A. Giugni, M. Allione, B. Torre et al. J. Opt., 16 (11), 114003 (2014). DOI: 10.1088/2040-8978/16/11/114003
  6. A. Giugni, B. Torre, A. Toma et al. Nature Nanotech., 8 (11), 845 (2013). DOI:10.1038/nnano.2013.207
  7. A.B. Petrin. Uspekhi prikladnoi fiziki, 3 (3), 236 (2015). (in Russian),
  8. A.B. Petrin. Quantum Electronics, 45 (7), 658 (2015). DOI: 10.1070/QE2015v045n07ABEH015713
  9. W.C. Chew. Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995)
  10. A.G. Kyurkchan, S.A. Manenkov. Radiotekhnika i elektronika. (in Russian), 65 (7), 644 (2020)
  11. A.B. Petrin. Opt. Spectrosc., 128, 1809 (2020). DOI:10.1134/S0030400X20110193
  12. A.B. Petrin. Opt. i spektr., 128 (12), 1874 (2020). (in Russian). DOI: 10.21883/EOS.2022.09.54838.3636-22
  13. A.B. Petrin. ZhETF, 159 (1), 35 (2021) (in Russian). DOI: 10.31857/S004445102101003X [A. B. Petrin. J. Exp. Theor. Phys., 132, 27 (2021). DOI: 10.1134/S1063776120120055]
  14. R.W.P. King, G.S. Smith. Antennas in Matter (M.I.T. Press, Cambridge MA, 1981)
  15. R.W.P. King. IEEE Trans. Microwave Theory Tech., 36 (6), 1080 (1988). DOI: 10.1109/22.3635
  16. A.B. Petrin. Opt. Spectrosc., 129, 72 (2021). DOI:10.1134/S0030400X21010161
  17. D.V. Sivukhin. Obshchiy kurs fiziki, III "Elektrichestvo" (Nauka, Moskva, 1977). (in Russian)
  18. A.B. Petrin. Uspekhi prikladnoi fiziki, 4 (4), 326 (2016). (in Russian)
  19. A.B. Petrin. High Temperature, 57 (1), 17 (2019). DOI:10.1134%2FS0018151X1901019X
  20. A.B. Petrin. Quantum Electronics, 45 (7), 658 (2015). DOI: 10.1070/QE2015v045n07ABEH015713
  21. A.B. Petrin. Prikladnaya fizika, N 1, 11 (2016). (in Russian)
  22. A. Ango. Matematika dlya elektro- i radioinzhenerov (Nauka, Moskva, 1967).(in Russian)
  23. A.F. Nikiforov, V.B. Uvarov. Spetsialnyye funktsii matematicheskoy fiziki (Nauka. Glavnaya redakciya fiziko-matematicheskoy literatury, Moskva, 1984). (in Russian)
  24. Chislennye metody teorii difrakcii (Matematika. Novoe v zarubezhnoy nauke. Vyp. 29): Sbornik statei. Per. s angl., (Mir, Moskva, 1982).(in Russian)
  25. L. Novotny, B. Kheht. Osnovy nanooptiki, pod red. Samarceva V.V. (Fizmatlit, Moskva, 2009).(in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru