Tinku A.1, Shelemanov A. A.1, Evstropiev S. K.1,2,3, Nikonorov N. V.1, Karavaeva A. V.4, Kiselev V. M.3
1ITMO University, St. Petersburg, Russia
2Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
3Vavilov State Optical Institute, St. Petersburg, Russia
4St. Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, Russia
Email: artem.tinku@mail.ru
Photoactive Cu-containing ZnO-ZnAl2O3 nanocomposites were synthesized by the polymer-salt method. To study the structure and properties of materials, the methods of luminescent spectroscopy and X-ray phase analysis were used. It has been shown that the resulting nanocomposites are capable of photogeneration of singlet oxygen under the action of UV and blue light. The synthesized materials consist of nanosized hexagonal ZnO crystals and cubic ZnAl2O4 crystals doped with Cu. The study of luminescent properties showed that nanocomposites can be used as down-converters of light that convert radiation from the UV-C range to UV-A and the visible spectral range. Keywords: singlet oxygen, nanoparticle, luminescence, ZnO, ZnAl2O4.
- K.R. Raghupathi, R.T. Koodali, A.C. Manna. Langmuir. 27 (7), 4028 (2011). DOI: 10.1021/la104825u
- K. Qi, Cheng B., J. Yu, W. Ho. J. Alloys Comp, 727, 792 (2017). DOI: 10.1016/j.jallcom.2017.08.142
- J. Theerthagiri, S. Salla, R.A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan, H.-S. Ki. Nanotechnology, 30 (39), 392001 (2019). DOI: 10.1088/1361-6528/ab268a
- F. Lin, B. Cojocaru, C.-L. Chou, C.A. Cadigan, Y. Ji, D. Nordlund, T.-C. Weng, Z. Zheng, V.I. Pervulescu, R.M. Richards. ChemCatChem, 5 (12), 3841 (2013). DOI: 10.1002/cctc.201300440
- S.K. Evstropiev, A.V. Karavaeva, M.A. Petrova, N.V. Nikonorov, V.N. Vasilyev, L.L. Lesnykh, K.V. Dukelskii. Mater. Today Comm., 21, 100628 (2019). DOI: 10.1016/j.mtcomm.2019.100628
- S.K. Sinha, T. Rakshit, S.K. Ray, I. Manna. Appl. Surf. Sci., 257 (24), 10551 (2012)
- L. Zhu, H. Li, Z. Liu, P. Xia, Y. Xie, D. Xiong. J. Phys. Chem., 122 (17), 9531 (2018). DOI: 10.1021/acs.jpcc.8b01933
- L. Shi, L. Liang, J. Ma, J. Sun. Superlattices and Microstructures, 62, 128 (2013). DOI: 10.1016/j.spmi.2013.07.013
- A.A. Shelemanov, S.K. Evstropiev, A.V. Karavaeva, N.V. Nikonorov, V.N. Vasilyev, Y.F. Podruhin, V.M. Kiselev. Mater. Chem. Phys., 276, 125204 (2022). DOI: 10.1016/j.matchemphys.2021.125204
- Z. Cheng, S. Zhao, L. Han. Nanoscale, 10, 6892(2018). DOI: 10.1039/c7nr09683f
- S. Maslennikov, S. Evstropiev, I. Sochnikov, A. Karavaeva, K. Dukelskii, V. Gridchin. Opt. Engineering, 58 (7), 077105(2019). DOI: 10.1117/1.OE.58.7.077105
- Y. Li, W. Zhang, J. Niu, Y. Chen. ACS Nano, 6 (6), 5164 (2012). DOI: 10.1021/nn300934k
- F. Vatansever, W.C.M.A. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, R. Chandran, M. Karimi, N.A. Parizotto, R. Yin, G.P. Tegos, M.R. Hamblin. FEMS Microbiol., 37, 955 (2013). DOI: 10.1111/1574-6976.12026
- R. Li, L. Zhang, P. Wang. Nanoscale, 7, 17167 (2015). DOI: 10.1039/c5nr04870b
- W.S. Chiu, P.S. Khiew, M. Cloke, D. Isa, T.K. Tan, S. Radiman, R. Abd-Shukor, M.A. Abd. Hamid, N.M. Huang, H.N. Lim, C.H. Chia. Engineering J., 158, 345 (2010)
- S. Wang, P. Kuang, B. Cheng, J. Yu, C. Jiang. J. Alloys Comp., 741, 622 (2018)
- R.C. Bradt, S.L. Burkett, Ceramic Microstructures: Control at the Atomic Level (Springer Science \& Business Media, New York, 1998), p. 339
- E.L. Foletto, S. Battiston, J.M. Simoes, M.M. Bassaco, L.S.F. Pereira, E.M.M. Flores, E.I. Muller. Microporous and Mesoporous Materials, 163, 29 (2012)
- C.G. Anchieta, D. Sallet, E.L. Foletto, S.S. da Silva, O. Chiavone-Filho, C.A.O. do Nascimento. Ceram. Int., 40, 4173 (2014)
- S. Battiston, C. Rigo, E. Severo, M. Mazutti, R.C. Kuhn, A. Gundel, E.L. Foletto. Mater. Research, 17 (3), 734 (2014). DOI: 10.1590/S1516-14392014005000073
- M. Zawadzki, W. Staszak, F.E. Lopez-Suarez, M.J. Illan-Gomez, A. Bueno-Lopez. Appl. Catalysis A: General, 371 (1), 92 (2009)
- X. Zhao, L. Wang, X. Xu, X. Lei, S. Xu, F. Zhang. AIChE Journal, 58 (2), 573 (2012)
- A. Chaudhary, A. Mohammad, S.M. Mobin. Materials Science and Engineering, 227, 136 (2018)
- M. Shahmirzaee, M.S. Afarani, A.M. Arabi, A.I. Nejhad. Res. Chem. Intermed., 43, 321 (2017)
- X. Yuan, X. Cheng, Q. Jing, J. Niu, D. Peng, Z. Feng, X. Wu. Materials (Basel), 11 (9), 1624 (2018)
- L. Zhang, J. Yan, M. Zhou, Y. Yang, Y.-N. Liu. Appl. Surf. Sci, 268, 237 (2013)
- F.Z. Akika, M. Benamira, H. Lahmar, M. Trari, I. Avramova, S. Suzer // Surface and Interfaces. 2020. V. 18. p. 100406
- Xian-ji Guo, Li-min Li, Shu-min Liu, Gai-ling Bao, Wen-hua Hou. mJ. Fuel Chem. and Technol, 35 (3), 329 (2007)
- A.A. Krasnovsky, R.V. Ambartzumian. Chem. Phys. Lett., 400, 531 (2004)
- V.M. Kiselev, I.M. Kislyakov, A.N. Burchinov. Opt. Spectrosc., 120 (4), 520 (2016)
- H. Morko s, U. Ozgur. Materials and Device Technology, 1 (2009)
- R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides (Acta Cryst., 1976), p. 751--767
- A.R. Lim. AIP Advances. 9, 105115 (2019)
- D.M. Fernandes, R. Silva, A.A. Winkler Hechenleitner, E. Radovanovic, M.A. Custodio Melo, E.A. Gomez Pineda. Mater. Chem. Phys., 115, 110 (2009)
- V.M. Volynkin, D.P. Danilovich, S.K. Evstropiev, K.V. Dukelsky, K.Yu. Senchik, R.V. Sadovnichy, V.M. Kiselev, I V. Bagrov, A.S. Saratovsky, N.V. Nikonorov, P.V. Bezborodkin. Optika i spektroskopiya129 (5), 642?649 (2021) (in Russian)
- T. Chitradevi, A.J. Lenus, N.V. Jaya. Mater. Research Express, 7, 1 (2020)
- S.-F. Wang, G.-Z. Sub, L.-M. Fang, L. Lei, X. Xiang, X.-T Zu. Sci. Rep., 5, 12849 (2015)
- F. Davar, M. Salavati-Niasari. J. Alloys Comp., 509 (5), 2487 (2011)
- H. Komitami, N. Sonoda, K. Hara. In: Proceedings of the International Display Workshops (IDW, 2020), p. 346--349
- R.S. Zeferino, M.B. Flores, U. Pal. J. Appl. Phys. 109, (2011)
- D. Das, P. Mondal. RSC Adv., 4, 35735 (2014)
- P.A. Rodny, K.A. Chernenko, I.D. Venevtsev. Optika i spektroskopiya, 125 (3), 357-363 (2018). (in Russian). DOI: 10.21883/OS/2018/09/46551/141-18 [P.A. Rodnyi, K.A. Chernenko, I.D. Venevtsev, Opt. Spectr., 125 (3), 372--378 (2018)]
- B. Allabergenov, U. Shaislamov, H. Shim, M.-J. Lee, A. Matnazarov, B. Choi. Optical Materials Express, 7 (2), 494 (2017)
- M.A. Subhan, T. Ahmed, R. Awal, R. Makioka, H. Nakata, T.T. Pakkanen, M. Suvanto, B.M. Kim. J. Luminescence, 146, 123 (2014)
- P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Zhang, Y. Dai. ACS Appl. Mater. Interfaces, 4, 4024 (2012)
- X.H. Lu, G.M. Wang, S.L. Xie, J.Y. Shi, W. Li, Y.X. Tong, Y. Li. Chem. Commun., 48, 7717 (2012)
- D.M. Hofmann, D. Pfisterer, J. Sann, B.K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, G. Pensl. Appl. Phys. A, 88, 147 (2007)
- S.S. Sampath, D.G. Kanhere, R. Pandey. J. Phys: Condensed Matter, 11, 3635 (1999)
- H. Dixit, N. Tandon, S. Cottenier, R. Saniz, D. Lamoen, B. Partoens, V. Van Speybrock, M. Waroquier. J. Physics, 13, 234 (2011)
- T. Tangcharoen, J. T-Thrienprasert, C. Kongmark. J. Adv. Ceram., 8 (3), 352 (2019)
- T. Ishinaga, T. Iguchi, H. Kominami, K. Hara, M. Kitaura, A. Ohnishi. Physica Status Solidi, 12 (6), 797 (2015).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.