Photoactive Cu-Containing ZnO-ZnAl2O4 nanocomposites
Tinku A.1, Shelemanov A. A.1, Evstropiev S. K.1,2,3, Nikonorov N. V.1, Karavaeva A. V.4, Kiselev V. M.3
1ITMO University, St. Petersburg, Russia
2Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
3Vavilov State Optical Institute, St. Petersburg, Russia
4St. Petersburg State Chemical Pharmaceutical Academy, St. Petersburg, Russia
Email: artem.tinku@mail.ru

PDF
Photoactive Cu-containing ZnO-ZnAl2O3 nanocomposites were synthesized by the polymer-salt method. To study the structure and properties of materials, the methods of luminescent spectroscopy and X-ray phase analysis were used. It has been shown that the resulting nanocomposites are capable of photogeneration of singlet oxygen under the action of UV and blue light. The synthesized materials consist of nanosized hexagonal ZnO crystals and cubic ZnAl2O4 crystals doped with Cu. The study of luminescent properties showed that nanocomposites can be used as down-converters of light that convert radiation from the UV-C range to UV-A and the visible spectral range. Keywords: singlet oxygen, nanoparticle, luminescence, ZnO, ZnAl2O4.
  1. K.R. Raghupathi, R.T. Koodali, A.C. Manna. Langmuir. 27 (7), 4028 (2011). DOI: 10.1021/la104825u
  2. K. Qi, Cheng B., J. Yu, W. Ho. J. Alloys Comp, 727, 792 (2017). DOI: 10.1016/j.jallcom.2017.08.142
  3. J. Theerthagiri, S. Salla, R.A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan, H.-S. Ki. Nanotechnology, 30 (39), 392001 (2019). DOI: 10.1088/1361-6528/ab268a
  4. F. Lin, B. Cojocaru, C.-L. Chou, C.A. Cadigan, Y. Ji, D. Nordlund, T.-C. Weng, Z. Zheng, V.I. Pervulescu, R.M. Richards. ChemCatChem, 5 (12), 3841 (2013). DOI: 10.1002/cctc.201300440
  5. S.K. Evstropiev, A.V. Karavaeva, M.A. Petrova, N.V. Nikonorov, V.N. Vasilyev, L.L. Lesnykh, K.V. Dukelskii. Mater. Today Comm., 21, 100628 (2019). DOI: 10.1016/j.mtcomm.2019.100628
  6. S.K. Sinha, T. Rakshit, S.K. Ray, I. Manna. Appl. Surf. Sci., 257 (24), 10551 (2012)
  7. L. Zhu, H. Li, Z. Liu, P. Xia, Y. Xie, D. Xiong. J. Phys. Chem., 122 (17), 9531 (2018). DOI: 10.1021/acs.jpcc.8b01933
  8. L. Shi, L. Liang, J. Ma, J. Sun. Superlattices and Microstructures, 62, 128 (2013). DOI: 10.1016/j.spmi.2013.07.013
  9. A.A. Shelemanov, S.K. Evstropiev, A.V. Karavaeva, N.V. Nikonorov, V.N. Vasilyev, Y.F. Podruhin, V.M. Kiselev. Mater. Chem. Phys., 276, 125204 (2022). DOI: 10.1016/j.matchemphys.2021.125204
  10. Z. Cheng, S. Zhao, L. Han. Nanoscale, 10, 6892(2018). DOI: 10.1039/c7nr09683f
  11. S. Maslennikov, S. Evstropiev, I. Sochnikov, A. Karavaeva, K. Dukelskii, V. Gridchin. Opt. Engineering, 58 (7), 077105(2019). DOI: 10.1117/1.OE.58.7.077105
  12. Y. Li, W. Zhang, J. Niu, Y. Chen. ACS Nano, 6 (6), 5164 (2012). DOI: 10.1021/nn300934k
  13. F. Vatansever, W.C.M.A. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, R. Chandran, M. Karimi, N.A. Parizotto, R. Yin, G.P. Tegos, M.R. Hamblin. FEMS Microbiol., 37, 955 (2013). DOI: 10.1111/1574-6976.12026
  14. R. Li, L. Zhang, P. Wang. Nanoscale, 7, 17167 (2015). DOI: 10.1039/c5nr04870b
  15. W.S. Chiu, P.S. Khiew, M. Cloke, D. Isa, T.K. Tan, S. Radiman, R. Abd-Shukor, M.A. Abd. Hamid, N.M. Huang, H.N. Lim, C.H. Chia. Engineering J., 158, 345 (2010)
  16. S. Wang, P. Kuang, B. Cheng, J. Yu, C. Jiang. J. Alloys Comp., 741, 622 (2018)
  17. R.C. Bradt, S.L. Burkett, Ceramic Microstructures: Control at the Atomic Level (Springer Science \& Business Media, New York, 1998), p. 339
  18. E.L. Foletto, S. Battiston, J.M. Simoes, M.M. Bassaco, L.S.F. Pereira, E.M.M. Flores, E.I. Muller. Microporous and Mesoporous Materials, 163, 29 (2012)
  19. C.G. Anchieta, D. Sallet, E.L. Foletto, S.S. da Silva, O. Chiavone-Filho, C.A.O. do Nascimento. Ceram. Int., 40, 4173 (2014)
  20. S. Battiston, C. Rigo, E. Severo, M. Mazutti, R.C. Kuhn, A. Gundel, E.L. Foletto. Mater. Research, 17 (3), 734 (2014). DOI: 10.1590/S1516-14392014005000073
  21. M. Zawadzki, W. Staszak, F.E. Lopez-Suarez, M.J. Illan-Gomez, A. Bueno-Lopez. Appl. Catalysis A: General, 371 (1), 92 (2009)
  22. X. Zhao, L. Wang, X. Xu, X. Lei, S. Xu, F. Zhang. AIChE Journal, 58 (2), 573 (2012)
  23. A. Chaudhary, A. Mohammad, S.M. Mobin. Materials Science and Engineering, 227, 136 (2018)
  24. M. Shahmirzaee, M.S. Afarani, A.M. Arabi, A.I. Nejhad. Res. Chem. Intermed., 43, 321 (2017)
  25. X. Yuan, X. Cheng, Q. Jing, J. Niu, D. Peng, Z. Feng, X. Wu. Materials (Basel), 11 (9), 1624 (2018)
  26. L. Zhang, J. Yan, M. Zhou, Y. Yang, Y.-N. Liu. Appl. Surf. Sci, 268, 237 (2013)
  27. F.Z. Akika, M. Benamira, H. Lahmar, M. Trari, I. Avramova, S. Suzer // Surface and Interfaces. 2020. V. 18. p. 100406
  28. Xian-ji Guo, Li-min Li, Shu-min Liu, Gai-ling Bao, Wen-hua Hou. mJ. Fuel Chem. and Technol, 35 (3), 329 (2007)
  29. A.A. Krasnovsky, R.V. Ambartzumian. Chem. Phys. Lett., 400, 531 (2004)
  30. V.M. Kiselev, I.M. Kislyakov, A.N. Burchinov. Opt. Spectrosc., 120 (4), 520 (2016)
  31. H. Morko s, U. Ozgur. Materials and Device Technology, 1 (2009)
  32. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides (Acta Cryst., 1976), p. 751--767
  33. A.R. Lim. AIP Advances. 9, 105115 (2019)
  34. D.M. Fernandes, R. Silva, A.A. Winkler Hechenleitner, E. Radovanovic, M.A. Custodio Melo, E.A. Gomez Pineda. Mater. Chem. Phys., 115, 110 (2009)
  35. V.M. Volynkin, D.P. Danilovich, S.K. Evstropiev, K.V. Dukelsky, K.Yu. Senchik, R.V. Sadovnichy, V.M. Kiselev, I V. Bagrov, A.S. Saratovsky, N.V. Nikonorov, P.V. Bezborodkin. Optika i spektroskopiya129 (5), 642?649 (2021) (in Russian)
  36. T. Chitradevi, A.J. Lenus, N.V. Jaya. Mater. Research Express, 7, 1 (2020)
  37. S.-F. Wang, G.-Z. Sub, L.-M. Fang, L. Lei, X. Xiang, X.-T Zu. Sci. Rep., 5, 12849 (2015)
  38. F. Davar, M. Salavati-Niasari. J. Alloys Comp., 509 (5), 2487 (2011)
  39. H. Komitami, N. Sonoda, K. Hara. In: Proceedings of the International Display Workshops (IDW, 2020), p. 346--349
  40. R.S. Zeferino, M.B. Flores, U. Pal. J. Appl. Phys. 109, (2011)
  41. D. Das, P. Mondal. RSC Adv., 4, 35735 (2014)
  42. P.A. Rodny, K.A. Chernenko, I.D. Venevtsev. Optika i spektroskopiya, 125 (3), 357-363 (2018). (in Russian). DOI: 10.21883/OS/2018/09/46551/141-18 [P.A. Rodnyi, K.A. Chernenko, I.D. Venevtsev, Opt. Spectr., 125 (3), 372--378 (2018)]
  43. B. Allabergenov, U. Shaislamov, H. Shim, M.-J. Lee, A. Matnazarov, B. Choi. Optical Materials Express, 7 (2), 494 (2017)
  44. M.A. Subhan, T. Ahmed, R. Awal, R. Makioka, H. Nakata, T.T. Pakkanen, M. Suvanto, B.M. Kim. J. Luminescence, 146, 123 (2014)
  45. P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Zhang, Y. Dai. ACS Appl. Mater. Interfaces, 4, 4024 (2012)
  46. X.H. Lu, G.M. Wang, S.L. Xie, J.Y. Shi, W. Li, Y.X. Tong, Y. Li. Chem. Commun., 48, 7717 (2012)
  47. D.M. Hofmann, D. Pfisterer, J. Sann, B.K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank, G. Pensl. Appl. Phys. A, 88, 147 (2007)
  48. S.S. Sampath, D.G. Kanhere, R. Pandey. J. Phys: Condensed Matter, 11, 3635 (1999)
  49. H. Dixit, N. Tandon, S. Cottenier, R. Saniz, D. Lamoen, B. Partoens, V. Van Speybrock, M. Waroquier. J. Physics, 13, 234 (2011)
  50. T. Tangcharoen, J. T-Thrienprasert, C. Kongmark. J. Adv. Ceram., 8 (3), 352 (2019)
  51. T. Ishinaga, T. Iguchi, H. Kominami, K. Hara, M. Kitaura, A. Ohnishi. Physica Status Solidi, 12 (6), 797 (2015).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru