Peculiarities of light absorption in chirped one-dimensional photonic crystals
Gevorgyan A. H. 1, Vanyushkin N. A.1, Efimov I.M.1, Golik S. S. 1,2, Mkhitaryan S. A.3, Harutyunyan M. Z.3, Rafayelyan M. S.3
1Far Eastern Federal University, Vladivostok, Russia
2Institute of Automation and Control Processes, Far East Branch Russian Academy of Science, Vladivostok, Russia
3Yerevan State University, Yerevan, Armenia
Email: agevorgyan@ysu.am, vaniuschkin.nick@ya.ru, efimov.im@dvfu.ru, golik_s@mail.ru, s.mkhitaryan@ysu.am, mharutyunyan@ysu.am, mrafayelyan@gmail.com

PDF
The features of light absorption and localization in one-dimensional chirped photonic crystals (PCs) are studied. It is shown that although chirping leads to the loss of ideal periodicity, the integral over a wide spectral region light energy density practically does not change. We have shown that violation of the ideal periodic structure (chirping) can not only decrease the integral in the broad spectral region absorption, but also lead to an increase in this absorption in the PC, and this depends on the form of chirping and the form of modulation of the imaginary part of the dielectric permittivity. A study of the evolution of the absorption spectra when the chirping contrast is changed showed that at certain values of the chirping contrast, mini-zones of transmission appear in the photonic band gap, where significant absorption is observed. Keywords: chirped photonic crystals, absorption, light localization, coupled modes, chirping contrast, mini zone
  1. F. Bloch. Z. fur Physik, 52 (1), 555-600 (1929). DOI: 10.1007/BF01339455
  2. J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E. Cunningham. Phys. Rev. B, 46, 7252-7255 (1992). DOI: 10.1103/PhysRevB.46.7252
  3. C. Zener. Proc. Roy. Soc. London A, 145, 523 (1934). DOI: 10.1098/rspa.1934.0116
  4. G.H. Wannier. Phys. Rev. 117, 432-439 (1960). DOI: 10.1103/PhysRev.117.432
  5. G. Malpuech, A. Kavokin, G. Panzarini, A. Di Carlo. Phys. Rev. B, 63, 035108 (2001). DOI: 10.1103/PhysRevB.63.035108
  6. C.M. de Sterke, J.N. Bright, P.A. Krug, T.E. Hammon. Phys. Rev. E, 57, 2365-2370 (1998). DOI: 10.1103/PhysRevE.57.2365
  7. R. Morandotti, U. Peschel, J.S. Aitchinson, H.S. Eisenberg, Y. Silberberg. Phys. Rev. Lett., 83, 4756-4759 (1999). DOI: 10.1103/PhysRevLett.83.4756
  8. T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, F. Lederer. Phys. Rev. Lett., 83, 4752-4755 (1999). DOI: 10.1103/PhysRevLett.83.4752
  9. V. Agarwal, J.A. del Rio, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, B. Gil. Phys. Rev. Lett., 92, 097401 (2004). DOI: 10.1103/PhysRevLett.92.097401
  10. P.B. Wilkinson. Phys. Rev. E, 65, 056616 (2002). DOI: 10.1103/PhysRevE.65.056616
  11. R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C.J. Oton, L. Pavesi. Phys. Rev. Lett., 91, 263902 (2003). DOI: 10.1103/PhysRevLett.91.263902
  12. G. Lenz, I. Talanina, C.M. de Sterke. Phys. Rev. Lett., 83, 963-966 (1999). DOI: 10.1103/PhysRevLett.83.963
  13. A.R. Davoyan, I.V. Shadrivov, A.A. Sukhorukov, Y.S. Kivshar. Appl. Phys. Lett., 94, 161105 (2009). DOI: 10.1063/1.3119666
  14. S. Longhi. Phys. Rev. Lett., 101, 193902 (2008). DOI: 10.1103/PhysRevLett.101.193902
  15. D.M. Sedrakian, A.H. Gevorgyan, A.Zh. Khachatrian, V.D. Badalian. Opt. Commun., 271, 451-456 (2007). DOI: 10.1016/j.optcom.2006.10.068
  16. S. Sharma, A. Mondal, R. Das. Opt. Express, 29, 43303-43315 (2021). DOI: 10.1364/OE.446783
  17. D.S. Garcia, D. Cardador, D. Vega, M. Santos, F. Dios, A. Rodriguez. J. Phys. Commun., 2, (2018) 055014. DOI: 10.1088/2399-6528/aac0ec
  18. H. Tian, Y. Ji, C. Li, H. Liu. Opt. Commun., 275, 83-89 (2007). DOI: 10.1016/j.optcom.2007.03.003
  19. Y. Huang, Y. Zhou, Sh.-T. Wu. Appl. Phys. Lett., 88, 011107 (2006). DOI: 10.1063/1.2161167
  20. A. Bruyant, G. Le'rondel, P.J. Reece, M. Gal. Appl. Phys. Lett., 82, 3227 (2003). DOI: 10.1063/1.1574403
  21. A.H. Gevorgyan, N.A. Vanyushkin, M.S. Rafayelyan. Eur. Phys. J. Plus, 137, 719 (2022), DOI: 10.1140/epjp/s13360-022-02944-9
  22. K.L. Tsakmakidis, A.D. Boardman, O. Hess. Nature, 450, 397-401 (2007). DOI: 10.1038/nature06285
  23. L. Chen, G.P. Wang, Q. Gan, F.J. Bartoli. Phys. Rev. B, 80, 161106(R) (2009). DOI: 10.1103/PhysRevB.80.161106
  24. S. Sharma, A. Mondal, R. Das. Opt. Lett., 46, 4566-4569 (2021). DOI: 10.1364/OL.437958
  25. Z. Hayran, H. Kurt, K. Staliunas. Sci. Rep., 7, 3046 (2017). DOI: 10.1038/s41598-017-03454-w
  26. J. Xu, S. Xiao, P. He, Y. Wang, Y. Shen, L. Hong, Y. Luo, B. He. Opt. Express, 29 (7), 11328-11341 (2021). DOI: 10.1364/OE.447874
  27. S. Elshahat, C. Lu. Front. Phys., 10, 831203 (2022). DOI: 10.3389/fphy.2022.831203
  28. S.-H. Kim, W.C. Jeong, H. Hwang, S.-M. Yang. Angew. Chem., 123, 11853-11857 (2011). DOI: 10.1002/ange.201104480
  29. K. Staliunas, V.J. Sanchez-Morcillo. Phys. Rev. A, 79, 053807 (2009). DOI: 10.1103/PhysRevA.79.053807
  30. H. Ding, C. Liu, B. Ye, F. Fu, H. Wang, Y. Zhao, Z. Gu. ACS Appl. Mater. Interfaces, 8 (11), 6796-6801 (2016). DOI: 10.1021/acsami.6b01991
  31. C.Q. Cook, A. Amir. Optica, 3, 1436-1439 (2016). DOI: 10.1364/OPTICA.3.001436
  32. D.M. Sedrakian, A.H. Gevorgyan, A.Zh. Khachatrian. Opt. Commun., 192 (3-6), 135-143 (2001). DOI: 10.1016/S0030-4018(01)01201-9
  33. A.H. Gevorgyan. Opt. Mater., 100, 109649 (2020). DOI: 10.1016/j.optmat.2019.109649
  34. N.A. Vanyushkin, A.H. Gevorgyan, S.S. Golik. Optical Materials, 127, 112306 (2022), DOI: 10.1016/j.optmat.2022.112306
  35. A.H. Gevorgyan. Tech. Phys. Lett., 34, 22-25 (2008). DOI: 10.1134/S1063785008010070

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru