Effect of nanodiamonds on fluorescence enhancement of tryptophan phototransformation reaction products in the presence of halocarbons
Kalvinkovskaya Ju. A. 1, Pavich T. A. 1, Ramanenka A. A. 1, Bushuk S. B. 2, Sobchuk A. N. 1, Lapina V. A. 1
1B.I.Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
2State Scientific - Production Association of Optics, Optoelectronics and Laser Technology, Minsk, Belarus
Email: juliet@ifanbel.bas-net.by, pavich@imaph.bas-net.by, a.ramanenka@ifanbel.bas-net.by, bushuk@oelt.basnet.by, sobchuk@ifanbel.bas-net.by, vlapina@ifanbel.bas-net.by

PDF
The role of nanodiamonds in the reaction of photochemical transformation of tryptophan in the presence of halogen hydrocarbons has been studied. The photochemical transformation of free tryptophan in a suspension with diamond nanoparticles and in a hybrid complex with them when exposed to UV radiation in the presence of chloroform is investigated. Data from stationary and time-resolved spectroscopic studies show the presence of non-radiative transfer of electron excitation energy between tryptophan molecules and its photodestruction products for the case of a covalent complex with a nanodiamond. It is shown that in the presence of energy transfer, an increase in the intensity of integral fluorescence occurs in the range of ~ 450 nm. Thus, a covalent tryptophan complex with a nanodiamond can serve as a fluorescent marker for the presence of chloroform in solution. Keywords: nanoscale diamonds, hybrid complexes, tryptophan phototransformation, spectral-luminescent properties, fluorescence decay kinetics, chloroform.
  1. N.L. Rosi, C.A. Mirkin. Chem. Rev., 105 (5), 1547 (2005). DOI: 10.1021/cr030067f
  2. X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie. Nat. Biotechno., 26 (1), 83 (2008). DOI: org/10.1038/nbt1377
  3. S. Zeng, D. Baillargeat, H.-P. Ho, K.-T. Yong. Chem. Soc. Rev., 43 (10), 3426 (2014). DOI: 10.1039/C3CS60479A
  4. C. Cheng, S. Li, A. Thomas, N.A. Kotov. Chem. Rev., 117 (3), 1826 (2017). DOI: 10.1021/acs.chemrev.6b00520
  5. L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu. Chem. Rev., 114 (21), 10869 (2014). DOI: 10.1021/cr400532z
  6. M.W. Tibbitt, J.E. Dahlman, R. Langer. J. Am. Chem. Soc., 138 (3), 704 (2016). DOI: 10.1021/jacs.5b09974
  7. S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan. Nat. Rev. Mater., 1, 16014 (2016). DOI: org/10.1038/natrevmats.2016.14
  8. Z. Liu, J.T. Robinson, S.M. Tabakman, K. Yang, H. Dai. Mater. Today, 14 (7), 316 (2011). DOI: org/10.1016/S1369-7021 (11)70161-4
  9. Y. Liu, X. Dong, P. Chen. Chem. Soc. Rev., 41 (6), 2283 (2012). DOI: org/10.1039/c1cs15270j
  10. R.G. Mendes, A. Bachmatiuk, B. Buechner, G. Cuniberti, M.H. Ruemmeli. J. Mater. Chem. B, 1 (4), 401 (2013). DOI: org/10.1039/C2TB00085G
  11. V.A. Lapina, G.S. Akhremkova, T.M. Gubarevich. Russ. J. Phys. Chem. A, 84 (3), 267 (2010). DOI: org/10.1134/S0036024410020184
  12. V.A. Lapina, S.B. Bushuk, T.A. Pavich, A. V. Vorobey. J. Appl. Spectrosc., 83 (3), 344 (2016). DOI: 10.1007/s10812-016-0292-3
  13. V.A. Lapina, T.A. Pavich, P.P. Pershukevich. Opt. Spectrosc., 122 (2), 219 (2017). DOI: 10.1134/S0030400X19080186
  14. D.L. Gur?ev, Him. Fizika 37, 11 (57) (in Russian)
  15. J.R. Arnault. Nanodiamands: advanced material analysis, properties and applications (Elsevier, Amsterdam, Netherlands, 2017)
  16. D. Creed. Photochem. Photobiol., 39 (4), 537 (1984). DOI: org/10.1111/j.1751-1097.1984.tb03890.x
  17. R.J. Robbins, G.R. Fleming, G.S. Beddard, G.W. Robinson, P.J. Thistlethwaite, G.J. Woolfe. J. Am. Chem. Soc., 102 (20), 6271 (1980). DOI: org/10.1021/ja00540a016
  18. E.P. Kirby, R.F. Steiner. J. Phys. Chem., 74 (26), 4480 (1970). DOI: org/10.1021/j100720a004
  19. R. Klein, I. Tatischeff, M. Bazin, R. Santus. J. Phys. Chem., 85 (6), 670 (1981). DOI: org/10.1021/j150606a012
  20. R.A. Edwards, G. Jickling, R.J. Turner. Photochem. Photobiol., 75 (4), 362 (2002). DOI: 10.1562/0031-8655(2002)075<0362:tlirot>2.0.co;2
  21. J.C. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed (Springer Science+Business Media, New York, 2006)
  22. C.L. Lander, K. Tran, M.L. Raymond, R.J. Turner, R.A. Edwards. Photochem. Photobiol., 90 (5), 1027 (2014). DOI: 10.1111/php.12279
  23. G.J. Mc Carthy. The Rare Earth in Modern Science and Technology. V. 2 (Plenum Press, New York, 1980)
  24. P.S. Sherin, Fotokhimicheskie reaktsii triptofana i ego prirodnogo metabolita kinurenina. , Synopsis of PhD thesis, (Russian Academy of Science "International tomographic center", Novosibirsk, 2009) (in Russian). URL: https://rusneb.ru/catalog/000199_000009_003469207/

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru