Petrov B. V. 1, Volkov M. P. 1
1Ioffe Institute, St. Petersburg, Russia
Email: borispetrov@mail.ru
Reflection spectra of quasi-two-dimensional organic conductors (EDT-TTF)4[Hg3I8]1-x, are considered, which, depending on the composition, demonstrate different phase transitions: x=0.027 - metal-superconductor with Tc= 8.1 K, x=0 - metal-insulator at a temperature of T<35 K. The polarized reflection spectra were analyzed using the "phase phonons" model, which takes into account the electronic-vibrational interaction. Using this model, the optical functions of both compounds were adequately described and the energy parameters of the π-electron system were obtained. It is shown that for the compound with x=0.027 these parameters change monotonically with temperature, while for x=0 they show a jump at the phase transition temperature. A comparison of the model parameter Delta (the value of the periodic potential) for crystals with different stoichiometric coefficients x=0 and x=0.027 was carried out and an assumption was made about the dependence of the periodic potential on the average charge of one EDT molecule. Keywords: organic conductors, EDT-TTF, layered structure, reflection spectra, "phase phonons" model, electronic-vibrational interaction, optical conductivity.
- Sandra Raba ca, Sandrina Oliveira, Isabel C. Santos, Vasco Gama, Dulce Belo, Elsa B. Lopes, Enric Canadell, Manuel Almeida. Inorg. Chem., 55 (20), 10343 (2016). https://doi.org/10.1021/acs.inorgchem.6b01555
- Nabil Mroweh, Alexandra Bogdan, Flavia Pop, Pascale Auban-Senzier, Nicolas Vanthuyne, Elsa B. Lopes, Manuel Almeida, Narcis Avarvari. Magnetochemistry, 7 (6), 87 (2021). https://doi.org/10.3390/magnetochemistry7060087
- E.I. Zhilyaeva, A.Y. Kovalevsky, R.B. Lyubovskii, S.A. Torunova, G.A. Mousdis, G.C. Papavassiliou, R.N. Lyubovskaya. Cryst. Growth Design, 7 (12), 2768 (2007). https://doi.org/10.1021/cg070339y
- Iwona Olejniczak. Charge localization and superconductivity in optical investigations of low-dimensional organic conductors including different functionalities, Instytut Fizyki Molekularnej Polskiej Akademii Nauk, Poznan (2021)
- R.M. Vlasova, B.V. Petrov, E.I. Zhilyaeva, S.A. Torunova, R.N. Lyubovskaya. Phys. Solid State, 56 (8) 1615 (2014). https://doi.org/10.1134/S1063783414080307
- R.M. Vlasova, B.V. Petrov, V.N. Semkin, E.I. Zhilyaeva, S.A. Torunova, R.N. Lyubovskaya. Phys. Solid State, 55 (9) 1913 (2013). https://doi.org/10.1134/S1063783413090321
- M.J. Rice. Phys. Rev. Lett., 37 (1), 36 (1976). https://doi.org/10.1103/PhysRevLett.37.36
- A. Lapinski, R.N. Lyubovskaya, E.I. Zhilyaeva. Chem. Phys., 323, (2-3), 161 (2006). https://doi.org/10.1016/j.chemphys.2005.08.050
- R.M. Vlasova, B.V. Petrov, V.N. Semkin, E.I. Zhilyaeva, S.A. Torunova. Phys. Solid State, 55 (1), 131 (2013). https://doi.org/10.1134/S1063783413010344
- R. Pyerls, Kvantovaya Teoriya Tverdykh Tel (IIL, M., 1956), 257 p. (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.