Features of the shape of the emission spectrum of a spherical microresonator with a high refractive index luminescent shell due to the polarization of the whispering gallery modes
Dukin A. A.
1, Golubev V. G.
11Ioffe Institute, St. Petersburg, Russia
Email: dookin@gvg.ioffe.ru, golubev@gvg.ioffe.ru
The effect of the thickness and refractive index of the shell on the amplitudes of lines of the TE and TM polarized whispering gallery modes (WGMs) in the emission spectrum of a microcavity structure consisting of a spherical core covered with a luminescent shell with a refractive index greater than that of the core is studied. The luminescence spectra of the shell, the radial distribution of the WGM field, and the mode parameters (wavelength, quality factor, and effective volume) are calculated using the method of spherical wave transfer matrices. It is shown that at certain subwavelength shell thicknesses, the amplitude of the TE mode emission peak is many times greater than the amplitude of the TM mode peak with the same polar, azimuthal, and radial indices. This is explained by the fact that with these parameters of the shell, WGMs propagate inside the shell as waveguide modes. Keywords: spherical microresonator, high refractive index luminescent shell, whispering gallery modes, mode polarization, amplitude of emission lines.
- M.R. Foreman, J.D. Swaim, F. Vollmer. Adv.Opt.Photon., 7 (2), 168 (2015). DOI: 10.1364/AOP.7.000168
- J. Ward, O. Benson. Las.Photon.Rev., 5 (4), 553 (2011). DOI: 10.1002/lpor.201000025
- A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G.C. Righini. Las. Photon. Rev., 4 (3), 457 (2010). DOI: 10.1002/lpor.200910016
- Y.P. Rakovich, J.F. Donegan. Las. Photon. Rev., 4 (2), 179 (2010). DOI: 10.1002/lpor.200910001
- G.C. Righini, S. Soria. Sensors, 16 (6), 905 (2016). DOI: 10.3390/s16060905
- L. Cai, J. Pan, Y. Zhao, J. Wang, S. Xiao. Phys. Status Solidi A, 217 (6), 1900825 (2020). DOI: 10.1002/pssa.201900825
- D. Venkatakrishnarao, E.A. Mamonov, T.V. Murzina, R. Chandrasekar. Adv. Opt. Mater., 6, 1800343 (2018). DOI: 10.1002/adom.201800343
- T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J.M.M. Hall, T.M. Monro, A. Fran cois. Las. Photon. Rev., 11 (2), 1600265 (2017). DOI:10.1002/lpor.201600265
- F. Vollmer, S. Arnold. Nat. Methods, 5 (7), 591 (2008). DOI: 10.1038/NMETH.1221
- X. Jiang, A.J. Qavi, S.H. Huang, L. Yang. Matter, 3 (2), 371 (2020). DOI: 10.1016/J.MATT.2020.07.008
- Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, Y.-F. Xiao. Adv. Mater., 29 (12), 1604920 (2017). DOI: 10.1002/adma.201604920
- I. Teraoka, S. Arnold. J. Opt.Soc.Am.B, 23 (7), 1434 (2006). DOI: 10.1364/JOSAB.23.001434
- I. Teraoka, S. Arnold. J.Opt.Soc.Am.B, 24 (3), 653 (2007). DOI: 10.1364/JOSAB.24.000653
- D. Ristic, A. Chiappini, M. Mazzola, D. Farnesi, G. Nunzi-Conti, G.C. Righini, P. Feron, G. Cibiel, M. Ferrari, M. Ivanda. Eur. Phys. J. Special Topics, 223 (10), 1959 (2014). DOI: 10.1140/epjst/e2014-02239-2
- S.A. Grudinkin, A.A. Dontsov, N.A. Feoktistov, M.A. Baranov, K.V. Bogdanov, N.S. Averkiev, V.G. Golubev. Semiconductors, 49 (10), 1369 (2015). DOI: 10.1134/S1063782615100085
- D. Ristic, A. Chiappini, A. Chiasera, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, S. Berneschi, G. Nunzi Conti, S. Pelli, S. Soria, G. Speranza, L. Lunelli, C. Pederzolli, F. Prudenzano, P. Feron, M. Ivanda, G. Cibiel, G.C. Righini, M. Ferrari. In: Laser Resonators, Microresonators, and Beam Control XIV, ed. by A.V. Kudryashov, A.H. Paxton, V.S. Ilchenko. Proc. SPIE, 8236,82361W (2012). DOI: 10.1117/12.910104
- E.Yu. Trofimova, D.A. Kurdyukov, S.A. Yakovlev, D.A. Kirilenko, Yu.A. Kukushkina, A.V. Nashchekin, A.A. Sitnikova, M.A. Yagovkin, V.G. Golubev. Nanotechnol., 24 (15), 155601 (2013). DOI: 10.1088/0957-4484/24/15/155601
- D.A. Kurdyukov, D.A. Eurov, D.A. Kirilenko, J.A. Kukushkina, V.V. Sokolov, M.A. Yagovkina, V.G. Golubev. Micro. Mesopor. Mater., 223, 225 (2016). DOI: 10.1016/j.micromeso.2015.11.018
- D.A. Kurdyukov, D.A. Eurov, D.A. Kirilenko, V.V. Sokolov, V.G. Golubev. Micro. Mesopor. Mater., 258, 205 (2018). DOI: 10.1016/j.micromeso.2017.09.017
- A. Weller, F.C. Liu, R. Dahint, M. Himmelhaus. Appl. Phys. B, 90 (3), 561 (2008). DOI: 10.1007/s00340-007-2893-2
- M. Himmelhaus, S. Krishnamoorthy, A. Francois. Sensors, 10 (6), 6257 (2010). DOI: 10.3390/s100606257
- M.A. Kaliteevski, S. Brand, R.A. Abram, V.V. Nikolaev. J. ModernOptics, 48 (9), 1503 (2001). DOI: 10.1080/09500340108231779
- Glass Micro- and Nanospheres Physics and Applications, ed. by G.C. Righini (Jenny Stanford Publishing, New York, 2019). DOI: 10.1201/b22474
- J.M.M. Hall, T. Reynolds, M.R. Henderson, N. Riesen, T.M. Monro, S. Afshar. Opt. Expr., 25 (6), 6192 (2017). DOI: 10.1364/OE.25.006192
- A.A. Dukin, V.G. Golubev, Opt. i spektr., 129 (10), 1314 (2021) (in Russian). DOI: 10.21883/OS.2021.10.51499.2266-21
- M.L. Gorodetsky, Opticheskie microrezonatory s gigantskoj dobrotnost?yu (Fizmatlit, Moskva, 2011) (in Russian)
- E.M. Purcell. Phys. Rev., 69 (11--12), 681 (1946). DOI: 10.1103/physrev.69.674
- Confined Photon Systems: Fundamentals and Applications, ed. by H. Benisty, C. Weisbuch, J.-M. Gerard, R. Houdre, J. Rarity (Springer-Verlag, Berlin Heidelberg, 1999)
- J.R. Reitz, F.J. Milford, R.W. Christy. Foundations of Electromagnetic Theory, 4th ed. (Addison-Wesley, 2008)
- E.Y. Trofimova, A.E. Aleksenskii, S.A. Grudinkin, I.V. Korkin, D.A. Kurdyukov, V.G. Golubev. Colloid J., 73 (4), 546 (2011). DOI: 10.1134/S1061933X11040156
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.