Local structure of amorphous (GeTe)x(Sb2Te3) films
Marchenko A.V. 1, Terukov E.I. 2,3, Nasredinov F. S. 4, Petrushin Yu. A. 1, Seregin P. P. 1
1Herzen State Pedagogical University of Russia, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
4Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: ppseregin@mail.ru

PDF
By the method of Messbauer spectroscopy on the isotope 119Sn, it was shown that tetravalent germanium atoms in amorphous films (GeTe)x(Sb2Te3) (where x=0.5, 1, 2, 3) form a tetrahedral system of chemical bonds, and in their local environment there are mainly tellurium atoms. In crystalline films (GeTe)x(Sb2Te3) is divalent hexoordinated germanium at positions 4 b of the NaCl type crystal lattice. By the meth-od of Messbauer spectroscopy on 121Sb and 125Te atoms, it was shown that the amorphization of (GeTe)x(Sb2Te3) films does not change the lo-cal environment of antimony and tellurium atoms Keywords: amorphous films, phase memory, Messbauer spectroscopy.
  1. D. Lencer, M. Salinga, M. Wuttig. Adv. Mater., 23, 2030 (2011). DOI:10.1002/adma.201004255
  2. C. Qiao, Y.R. Guo, J.J. Wang, H. Shen, S.Y. Wang, Y.X. Zheng, R.J. Zhang, LY. Chen, C.Z. Wang, K.M. Ho. J. Alloys and Compounds, 774, 748 (2019). DOI:10.1063/5.0067157
  3. B. Zhang, X.P. Wang, Z.J. Shen, X.B. Li, C.S. Wang, Y.J. Chen, J.X. Li, J.X. Zhang, Z. Zhang, S.B. Zhang, X.D. Han. Sci. Rep., 6, 25453 (2016). DOI: 10.1038/srep25453
  4. Xue-Peng Wang, Xian-Bin Li, Nian-Ke Chen, Qi-Dai Chen, Xiao-Dong Han, Shengbai Zhang, Hong-Bo Sun. Acta Mater., 136, 242 (2017). DOI:10.1016%2fj.actamat.2017.07.006\& partner
  5. Z. Sun, S. Kyrsta, D. Music, R. Ahuja, J.M. Schneider. Solid State Commun., 143, 240 (2007). DOI:10.1016/j.ssc.2007.05.018
  6. P. Urban. Cryst. Eng. Comm., 15, 4823 (2013). DOI: 10.1039/C3CE26956F
  7. A. Lotnyk, U. Ross, S. Bernutz, E. Thelander, B. Rauschenbach. Sci. Rep., 6, 26724 (2016). DOI: 10.1038/srep26724
  8. Y. Zheng, Y. Wang, T. Xin, Y. Cheng, R. Huang, P. Liu, M. Luo, Z. Zhang, Z. Song, S. Feng. Commun. Chem., 2, 1 (2019). DOI.org/10.1038/s42004-019-0114-7
  9. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominga, T. Uruga. Nat. Mater., 3, 703 (2004). DOI: 10.1038/nmat1215
  10. D.A. Baker, M.A. Paesler, G. Lucovsky, S.C. Agarwal, P.C. Taylor. Phys. Rev. Lett., 96, 255501 (2006). DOI:10.1103/PhysRevLett.96.255501
  11. D.A. Baker, M.A. Paesler, G. Lucovsky, S.C. Agarwal, P.C. Taylor, J. Non-Cryst. Solids, 352, 1621 (2006). DOI:10.1016/j.jnoncrysol.2005.11.079
  12. P. Jovari, I. Kaban, J. Steiner, B. Beuneu, A. Schops, M.A. Webb. Phys. Rev. B, 77, 035202 (2008). DOI:10.1103/PhysRevB.77.035202
  13. Z. Sun, J. Zhou, R. Ahuja. Phys. Rev. Lett., 96, 055507 (2006). DOI:10.1103/PhysRevLett.96.055507
  14. M. Jung, H.J. Shin, K. Kim, J.S.Noh, J. Chung. Appl. Phys. Lett., 89, 043503 (2006). DOI:10.1063/1.2236216 89
  15. J.R. Stellhorn, S. Hosokawa, S. Kohara. Analytical Sci., 36, 5 (2020). DOI:10.2116/analsci.19SAR02
  16. A.V. Marchenko, P.P. Seregin, E.I. Terukov, K.B. Shakhovich. Semiconductors, 53, 711 (2019). DOI: 10.1134/S1063782619050166
  17. P.P. Seregin, V.P. Sivkov, F.S. Nasredinov, L.N. Vasilev, Yu.V. Krylnikov, Y.P. Kostikov. Phys. Stat. Sol. (a), 39, 437 (1977).
  18. G.A. Bordovsky, A.V. Marchenko, F.S. Nasredinov, Y.A. Petrushin, P.P.Seregin. FKhS, 47, 179 (2021). DOI: 10.31857/S0132665121020037 [G.A. Bordovskii, A.V. Marchenko, F.S. Nasredinov, Ya.A. Petrushin, P.P. Seregin. Glass Phys. Chem., 47, 166 (1921). DOI: 10.1134/S1087659621020036]
  19. A.V. Marchenko, E.I. Terukov, F.S. Nasredinov, Y.A. Petrushin, P.P. Seregin. FTP, 55, 3 (2021). DOI: 10.21883/TP.2022.11.55175.186-22 [A.V. Marchenko, E.I. Terukov, F.S. Nasredinov, Ya.A. Petrushin. Semiconductors, 55, 1 (1921). DOI: 10.1134/S1063782621010127]
  20. F. Ledda, C. Muntoni, A. Rucci, S. Serci, G. Alonzo, M. Consiglio, T. Bressani. Hyperfine Interactions, 41, 591, (1988)
  21. S. Rigamonti, G. Petrini. Phys. Stat. Sol. (a), 41, 591 (1970)
  22. G.A. Bordovsky, E.I. Terukov, N.I. Anisimova, A.V. Marchenko, P.P. Seregin. FTP 43, 1232 (2009). [G.A. Bordovskii, E.I. Terukov., N.I. Anisimova, A.V. Marchenko, P.P. Seregin. Semiconductors, 43, 1193 (2009). DOI: 10.1134/S1063782609090164]
  23. M. Micoulaut, K. Gunasekera, S. Ravindren, P. Boolchand. Phys. Rev. B, 90, 094207 (2014). DOI:10.1103/PhysRevB.90.094207
  24. P. Boolchand, B.B. Triplett, S.S. HannaS. Mossbauer Effect Methodology (New England Nuclear Corporation, 1974)
  25. M.K. Gauer, I. Dezsi, U. Gonser, G. Langouche, H. Ruppersberg. J. Non-Cryst. Solids, 101, 31 (1988). DOI:10.1016/0022-3093(88)90365-1
  26. M.K. Gauer, I. Dezsi, U. Gonser, G. Langouche, H. Ruppersberg. J. Non-Cryst. Solids, 109, 247 (1989). DOI:10.1016/0022-3093(88)90365-1
  27. R. Mantovan, R. Fallica, A. Mokhles Gerami, T.E. Molhol, C. Wiemer, M. Longo, H.P. Gunnlaugsson, K. Johnston, H. Masenda, D. Naidoo, M. Ncube, K. Bharuth-Ram, M. Fanciulli, H.P. Gislason, G. Langouche, S. Glafsson, G. Weyer. Scientific Rep., 7, 8234 (2017). DOI:10.1038/s41598-017-08275-5
  28. R.W. Olesinski, G.J. Abbaschian. Bulletin of Alloy Phase Diagrams, 5,265 (1984)
  29. T. Chattopadhyay, J.X. Boucherle, H.G. von Schnering. J. Phys. C, 20, 1431 (1987)
  30. K. Bobokhuzhaev, A. Marchenko, P. Seregin. Structural and Anti-Structural Defects in Chalcogenide Semiconductors. Mossbauer Spectroscopy (LAP Lambert Academic Publishing, 2020)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru