Study of the Effect of a Small Addition of ZrO2 on the Density and Grain Growth of Alumina
Boldin M. S.1, Popov A. A.1, Murashov A. A.1, Sakharov S. V.1, Shotin S.V.1, Nokhrin A. V.1, Chuvil’deev V. N.1, Tabachkova N. Yu.2,3, Smetanina K. E.1
1 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
2National University of Science and Technology MISiS, Moscow, Russia
3Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: boldin@nifti.unn.ru

PDF
The effect of an additive of 0.5 wt.% of zirconium oxide on the spark plasma sintering (SPS) kinetics of alumina powders has been studied. Ceramics were obtained by mixing alumina powders in a planetary mill with grinding media from stabilized zirconium oxide. The activation energy of SPS was estimated using the Young-Cutler model. It has been shown that the density and average grain size in ceramics obtained from submicron alumina powders are significantly affected by the nonequilibrium state of the interfaces formed as a result of the transformation of the amorphous phase present on the alumina powder particle surface. The grain size and density of ceramics obtained from fine powders are significantly affected by the coalescence of ZrO2 particles. Keywords: Alumina, zirconium oxide, spark plasma sintering, density, diffusion, activation energy.
  1. A.G. Evans, T.G. Langdon. Structural Ceramics (Pergamon Press, Oxford, 1976)
  2. V.Y. Shevchenko, S.M. Barinov. Technical Ceramics (Nauka, M., 1993), 192 p
  3. A.Z.A Azhar, M.M. Ratman, Z.A. Ahmad. J. Alloys Compounds, 478 (1--2), 608 (2009). DOI: 10.1016/j.jallcom.2008.11.156
  4. J. Chai, Y. Zhu, T. Shen, Y. Liu, L. Niu, S. Li, P. Jin, M. Cui, Z. Wang. Ceramics Int., 46 (17), 27143 (2020). DOI: 10.1016/j.ceramint.2020.07.194
  5. A. Ruys. Alumina Ceramics Biomedical and Clinical Applications (Woodhead Publishing, Cambridge, 2019)
  6. A.P. Garshin, V.M. Gropianov, G.P. Zaitsev, S.S. Semenov. Ceramics for Mechanical Engineering (Nauchtehlitizdat, Moscow, 2003), 384 p
  7. S. Meir, S. Kalabukhov, S. Hayun, Ceramics Int., 40 (8), 1287 (2014). DOI: 10.1016/j.ceramint.2014.04.059
  8. D. Jiang, D.M. Hulbert, J.D. Kuntz, U. Anselmi-Tamburini, A.K. Mukherjee. Mater. Sci. Eng. A, 463 (1--2), 89 (2007). DOI: 10.1016/j.msea.2006.07.163
  9. M. Tokita. Ceramics, 4 (2), 160 (2021). DOI: 10.3390/ceramics4020014
  10. Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, S.-L. Li. Materials Design., 191, 108662 (2020). DOI: 10.1016/j.matdes.2020.108662
  11. D.J. Green. J. Am. Ceramic Soc., 65 (12), 610 (1982). DOI: 10.1111/j.1151-2916.1982.tb09939.x
  12. F.F. Lange, M.M. Hirlinger. J. Am. Ceramic Soc., 67 (3), 164 (1984). DOI: 10.1111/j.1151-2916.1984.tb19734.x
  13. M.S. Boldin, A.A. Popov, E.A. Lantsev, A.V. Nokhrin, V.N. Chuvil'deev. Materials, 15 (6), 2167 (2022). DOI: 10.3390/ma15062167
  14. F.A.T. Guimaraes, K.L. Silva, V. Trombini, J.J. Pierri, J.A. Rodrigues, R. Tomasi, E.M.J.A. Pallone. Ceramics Int., 35 (2), 741 (2009). DOI: 10.1016/j.ceramint.2008.02.002
  15. V.N. Chuvil'deev, M.S. Boldin, Ya.G. Dyatlova, V.I. Rumyantsev, S.S. Ordan'yan. Rus. J. Inorg. Chem., 60 (8), 987 (2015). DOI: 10.1134/S0036023615080057
  16. M.N. Rahaman. Ceramic Processing and Sintering (Marcel Dekker Inc., NY., 2003)
  17. E.A. Olevsky, L. Froyen. J. Am. Ceramic Soc., 92 (s1), S122 (2009). DOI: 10.1111/j.1551-2916.2008.02705.x
  18. W.S. Young, I.B. Culter. J. Am. Ceramic Soc., 53 (12), 659 (1970). DOI: 10.1111/j.1151-2916.1970.tb12036.x
  19. E.A. Lantsev, N.V. Malekhonova, Y.V. Tsvetkov, Y.V. Blagoveshchensky, V.N. Chuvil'deev, A.V. Nokhrin, M.S. Boldin, P.V. Andreev, K.E. Smetanina, N.V. Isaeva. Inorg. Mater. Appl. Res., 12 (3), 650 (2021). DOI: 10.1134/S2075113321030242
  20. H.J. Frost, M.F. Ashby. Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)
  21. A.E. Paladino, R.L. Coble. J. Am. Ceramic Soc., 46 (3), 133 (1963). DOI: 10.1111/j.1151-2916.1963.tb11696.x
  22. V.N. Chuvil'deev, E.S. Smirnova. Phys. Solid State, 58 (7), 1487 (2016). DOI: 10.1134/S1063783416070118
  23. V.I. Betekhtin, A.G. Kadomtsev, A.Yu. Kipyatkova, A.M. Glezer. Phys. Solid State, 40 (1), 74 (1998). DOI: 10.1134/1.1130237
  24. V.N. Chuvildeev. Non-equilibrium grain boundaries in metals. Theory and appendices (Fizmatlit, M., 2004), 304 c
  25. J. Wang, R. Raj. J. Am. Ceramic Soc., 74 (8), 1959 (1991). DOI: 10.1111/j.1151-2916.1991.tb07815.x
  26. T.-S. Yeh, M.D. Sacks. J. Am. Ceramic Soc., 71 (12), C-484 (1988). DOI: 10.1111/j.1151-2916.1988.tb05812.x

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru