CoFe/Cu/CoFe/FeMn spin valves and CoFe/Cu/CoFe three-layer nanostructures at microwave frequencies
Rinkevich A. B. 1, Kuznetsov E. A.1,2, Perov D. V. 1, Milyaev M. A. 1, Naumova L. I. 1, Makarova M. V. 1
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Russian State Vocational Pedagogical University, Yekaterinburg, Russia
Email: rin@imp.uran.ru, kuzeag@mail.ru, peroff@imp.uran.ru, milyaev@imp.uran.ru, naumova@imp.uran.ru, makarova@imp.uran.ru

PDF
The microwave magnetoresistance of CoFe/Cu/CoFe/FeMn spin valves and CoFe/Cu/CoFe three-layer nanostructures with high magnetoresistance has been studied. The transmission and reflection coefficients were measured at the frequency range from 26 to 38 GHz in magnetic fields up to 12 kOe. It is shown that the dependences of the transmission coefficient of spin valves are not symmetric with respect to the H=0 axis, as well as the dependences of magnetoresistance. It is established that the relative changes in the microwave transmission coefficient are 1.5-2 times higher than the relative magnetoresistance measured at direct current. Changes in the reflection coefficient have a smaller value and the opposite sign with respect to changes in the transmission coefficient. Keywords: metal superlattices, spin valves, ferromagnetic resonance, ferromagnetic antiresonance, microwave giant magnetoresistance effect.
  1. B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Whilhoit, D. Mauri. Phys. Rev. B, 43 (1), 1297(R) (1991). DOI: 10.1103/PhysRevB.43.1297
  2. S. Cardoso, D.C. Leitao, T.M. Dias, J. Valadeiro, M.D. Silva, A. Chicharo, V. Silverio, J. Gaspar, P.P. Freitas. J. Phys. D: Appl. Phys., 50 (21), 213001 (2017). DOI: 10.1088/1361-6463/aa66ec
  3. B. Dieny. In: Magnetoelectronics, ed. by M. Johnson. (Elsevier, Amsterdam, London, 2004), p. 67
  4. M. Oltscher, F. Eberle, T. Kuczmik, A. Bayer, D. Schuh, D. Bougeard, M. Ciorga, D. Weiss. Nat. Commun., 8, 1807 (2017). DOI: 10.1038/s41467-017-01933-2
  5. V.C. Martins, J. Germano, F.A. Cardoso, J. Loureiro, S. Cardoso, L. Sousa, M. Piedade, L.P. Fonseca, P.P. Freitas. J. Magn. Magn. Mater., 322 (9-12), 1655 (2010). DOI: 10.1016/j.jmmm.2009.02.141
  6. A. Chicharo, F. Cardoso, S. Cardoso, P.P. Freitas. IEEE Trans. Magn., 50 (11), 5102204 (2014). DOI: 10.1109/TMAG.2014.2325813
  7. P.P. Freitas, R. Ferreira, S. Cardoso. Proc. IEEE., 104 (10), 1894 (2016). DOI: 10.1109/JPROC.2016.2578303
  8. K. Matsuki, R. Ohshima, L. Leiva, Y. Ando, T. Shinjo, T. Tsuchiya, M. Shiraishi. Sci. Rep., 10, 10699 (2020). DOI: 10.1038/s41598-020-67762-4
  9. N.G. Bebenin, V.V. Ustinov. Phys. Met. Metallogr., 116 (2), 170 (2015). DOI: 10.1134/S0031918X15020039
  10. D.V. Berkov, N.L. Gorn. J. Appl. Phys., 103 (5), 053908 (2008). DOI: 10.1063/1.2890397
  11. Z.R. Tadisina, S. Gupta, P. LeClair, T. Mewes. J. Vac. Sci. Technol. A, 26 (4), 735 (2008). DOI: 10.1116/1.2912070
  12. W.H. Butler, X.-G. Zhang, D.M.C. Nicholson. Phys. Rev. B, 52 (18), 13399 (1995). DOI: 10.1103/PhysRevB.52.13399
  13. J.-S. Baek, W.-Y. Lim, S.-H. Lee, M.-Y. Kim, J.-R. Rhee. J. Magn., 5 (4), 139 (2000)
  14. K.B. Fathoni, Y. Sakuraba, T. Sasaki, Y. Miura, J.W. Jung, T. Nakatani, K. Hono. APL Mater., 7 (11), 111106 (2019). DOI: 10.1063/1.5119370
  15. L.I. Naumova, M.A. Milyaev, R.S. Zavornitsin, A.Y. Pavlova, I.K. Maksimova, T.P. Krinitsina, T.A. Chernyshova, V.V. Proglyado, V.V. Ustinov. Phys. Met. Metallogr., 120 (7), 653 (2019)
  16. A.B. Rinkevich, E.A. Kuznetsov, M.A. Milyaev, L.N. Romashev, V.V. Ustinov. Phys. Met. Metallogr., 121 (12), 1137 (2020). DOI: 10.1134/S0031918X2012011X
  17. D.E. Endean, J.N. Heyman, S. Maat, E. Dan Dahlberg. Phys. Rev. B, 84 (21), 212405 (2011). DOI: 10.1103/PhysRevB.84.212405
  18. V.V. Ustinov, A.B. Rinkevich, I.G. Vazhenina, M.A. Milyaev. J. Exp. Theor. Phys., 131 (1), 139 (2020). DOI: 10.1134/S1063776120070171
  19. C.-L. Lee, A. Devasahayam, M. Mao, J. Kools, P. Cox, K. Masaryk, D. Mahenthiran. J. Munson. J. Appl. Phys., 93 (10), 8406 (2003). DOI: 10.1063/1.1558097
  20. Y. Kamiguchi, K. Saito, H. Iwasaki, M. Sahashi. J. Appl. Phys., 79 (8), 6399 (1996). DOI: 10.1063/1.362011
  21. X. Peng, A. Morrone, K. Nikolaev, M. Kief, M. Ostrowski. J. Magn. Magn. Mater., 321 (18), 2902 (2009). DOI: 10.1016/j.jmmm.2009.04.047
  22. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan. Microwave Electronics: Measurement and Materials Characterization (John Wiley \& Sons, Hoboken, 2004), DOI: 10.1002/0470020466
  23. A.B. Rinkevich, E.A. Kuznetsov, D.V. Perov, M.A. Milyaev. Tech. Phys., 66 (2), 298 (2021). DOI: 10.1134/S1063784221020171
  24. L.M. Brekhovskikh. Waves in Layered Media (Academic Press, London, 1980)
  25. N.A. Semenov. Technical Electrodynamics (Svyaz', M., 1972)
  26. T. Rausch, T. Szczurek, M. Schlesinger. J. Appl. Phys., 85 (1), 314 (1999). DOI: 10.1063/1.369448
  27. A. Rinkevich, L. Romashev, M. Milyaev, E. Kuztetsov, M. Angelakeris, P. Poulopoulos. J. Magn. Magn. Mater., 317 (1), 15 (2007). DOI: 10.1016/j.jmmm.2007.03.209
  28. D.P. Belozorov, V.N. Derkach, S.V. Nedukh, A.G. Ravlik, S.T. Roschenko, I.G. Shipkova, S.I. Tarapov, F. Yildiz. Int. J. Infrared Milli. Waves, 22 (11), 1669 (2001). DOI: 10.1023/A:1015060515794
  29. R.E. Collin. Field Theory of Guided Waves (Wiley-Interscience-IEEE, NY., Chichester, Weinheim, Brisbane, Singapore, Toronto, 1991) V.V. Nikolsky, T.I. Nikolskaya. Electrodynamics and Radio Wave Propagation (Nauka, M., 1989)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru