Small amplitude breather of the nonlinear Klein-Gordon equation
Zav'yalov D.V. 1, Konchenkov V.I. 1,2, Kryuchkov S.V. 1,2
1Volgograd State Technical University, Volgograd, Russia
2Volgograd State Socio-Pedagogical University, Volgograd, Russia
Email: sinegordon@gmail.com, kontchenkov@yandex.ru

PDF
A technique for obtaining an approximate breather solution of the Klein-Gordon equation is presented. A breather solution of the equation describing the propagation of nonlinear waves in a graphene-based superlattice is investigated. Keywords: Klein-Gordon equation, traveling breather, approximate solution, correlation coefficient.
  1. J. Cuevas-Maraver, P.G. Kevrekidis, F. Williams (eds.). The sine-Gordon Model and its Applications (Springer, Cham, 2014), DOI: 10.1007/978-3-319-06722-3
  2. A.D. Jagtap, E. Saha, J.D. George, A.S. Vasudeva Murthy. Wave Motion, 73, 76 (2017). DOI: 10.1016/j.wavemoti.2017.05.003
  3. R. Carretero-Gonz'alez, L.A. Cisneros-Ake, R. Decker, G.N. Koutsokostas, D.J. Frantzeskakis, P.G. Kevrekidis, D.J. Ratliff. Commun Nonlinear Sci., 109, 106123 (2022). DOI: 10.1016/j.cnsns.2021.106123
  4. O.M.L. Gomide, M. Guardia, T.M. Seara, Ch. Zeng. arXiv:2107.14566. DOI: 10.48550/arXiv.2107.14566
  5. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur. Stud. Appl. Math., 53 (4), 249 (1974). DOI: 10.1002/sapm1974534249
  6. M. Remoissenet. Waves Called Solitons: Concepts and Experiments (Springer-Verlag, Berlin, 1999), DOI: 10.1007/978-3-662-03790-4
  7. A.A. Minzoni, N.F. Smyth, A.L. Worthy. Physica D, 189, 167 (2004). DOI: 10.1016/j.physd.2003.09.047
  8. D. Scheider. Nonlinearity, 33, 7140 (2020). DOI: 10.1088/1361-6544/abb78b
  9. Y. Sire, G. James. Physica D, 204, 15 (2005). DOI: 10.1016/j.physd.2005.03.008
  10. D.E. Pelinovsky, T. Penati, S. Paleari. In: Mathematics of Wave Phenomena. Trends in Mathematics, ed. by W. Dorfler, M. Hochbruck, D. Hundertmark, W. Reichel, A. Rieder, R. Schnaubelt, B. Schorkhuber (Cham, Birkhauser, 2020), p. 251-278. DOI: 10.1007/978-3-030-47174-3_16
  11. A.M. Kosevich, A.S. Kovalev, JETP, 40 (5), 891 (1975)
  12. T.I. Belova, A.E. Kudryavtsev. Phys. Usp., 40, 359 (1997). DOI: 10.1070/PU1997v040n04ABEH000227
  13. S.V. Kryuchkov, E.I. Kukhar'. Physica B, 408, 188 (2013). DOI: 10.1016/j.physb.2012.09.052
  14. F. Martin-Vergara, F. Rus, F.R. Villatoro. In: Nonlinear Systems, Vol. 2. Understanding Complex Systems, ed. by J. Archilla, F. Palmero, M. Lemos, B. Sanchez-Rey, J. Casado-Pascual (Cham, Springer, 2018), p. 85-110. DOI: 10.1007/978-3-319-72218-4
  15. F. Martin-Vergara, F. Rus, F.R.Villatoro. Chaos Soliton Fract., 151, 111281 (2021). DOI: 10.1016/j.chaos.2021.111281
  16. G.T. Adamashvili. arXiv:2107.12154v1. DOI: 10.48550/arXiv.2107.12154
  17. T. Taniuti, N. Yajima. J. Math. Phys., 10 (8), 1369 (1969). DOI: 10.1063/1.1664975
  18. N. Asano, T. Taniuti, N. Yajima. J. Math. Phys., 10 (11), 2020 (1969). DOI: 10.1063/1.1664797
  19. T. Taniuti, N. Yajima. J. Math. Phys., 14 (10), 1389 (1973). DOI: 10.1063/1.1666193

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru