Versatile Tunable Microresonator for the Light-Matter Interaction Studying in the Strong-Coupling Mode
Mochalov K. E. 1, Samokhvalov P. S. 2, Gun'ko Yu. K. 2
1Laboratory of Molecular Biophysics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
Email: mochalov@mail.ru, p.samokhvalov@gmail.com, yurigunko7@gmail.com

PDF
The interaction between an ensemble of molecules and an electromagnetic field in a highly limited volume makes it possible to control the properties of a substance and, therefore, is an exceptionally promising area of research. The most common way to achieve weak or strong light-matter coupling is to place an ensemble of molecules in a micron-sized resonator. In such a system,the interaction of light with matter appears in the form of a change in the spectral response of the system, which depends on the strength of the coupling between the ensemble of molecules and the modes of the resonator. Currently, there is no general and user-friendly approach that allows studying a lot of different samples in a wide optical range using the same resonator setup. The present paper describes the design of a device that makes it possible to overcome this disadvantage, speed up and facilitate the study of the light-matter interaction, and also obtain weak and strong light-matter coupling modes for a large number of samples in the UV, visible, and IR regions of the optical spectrum. The device developed here is based on the tunable unstable λ/2 Fabry-Perot microresonator, consisting of flat and convex mirrors, which satisfy the condition of plane-parallelism at least at one point of the curved mirror and can significantly reduce the mode volume. The device was used to study the effect of the strong-coupling regime on the fluorescent properties of the Rhodamine 6G (R6G) dye embedded in a boron nitride nanoparticles matrix. It was found that the use of boron nitride (h-BN) as a carrier matrix has an orienting effect on the dye molecules, that results in an increase of the light-matter coupling strength at a lower resonator mode energy required. Keywords: microspectroscopy, optical microresonator, strong coupling, boron nitride.
  1. E.M. Purcell. Phys. Rev., 69, 681 (1946)
  2. M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, A.J. Meixner. Chem. Phys. Chem., 6 (10), 2190 (2005). DOI: 10.1002/cphc.200500108
  3. A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A.J. Meixner, J. Enderlein. Phys. Rev. Lett., 102 (7), 073002 (2009). DOI: 10.1103/PhysRevLett.102.073002
  4. F. Schleifenbaum, K. Elgass, M. Steiner, J. Enderlein, S. Peter, A.J. Meixner. Proc. SPIE, 7185, 718504 (2009). DOI: 10.1117/12.809325
  5. F. Schleifenbaum. Energy Transfer in the Red Fluorescent Protein DsRed in Confined Optical Fields: Energieubertrage in Dem Rot Fluoreszierenden Protein DsRed in Definiert Begrenzten Optischen Feldern, Rhombos (2008)
  6. M. Steiner, A.V. Failla, A. Hartschuh, F. Schleifenbaum, C. Stupperich, A.J. Meixner. New J. Phys., 10 (12), 123017 (2008). DOI: 10.1088/1367-2630/10/12/123017
  7. D. Melnikau, R. Esteban, D. Savateeva, A. Sanchez-Iglesias, M. Grzelczak, Mikolaj K. Schmidt, L.M. Liz-Marzan, J. Aizpurua, Yu.P. Rakovich. J. Phys. Chem. Lett., 7 (2), 354 (2016). DOI: 10.1021/acs.jpclett.5b02512
  8. N.T. Fofang, N.K. Grady, Z. Fan, A.O. Govorov, N.J. Halas. Nano Lett., 11 (4), 1556 (2011). DOI: 10.1021/nl104352j
  9. A.G. Bakanov, N.A. Toropov, T.A. Vartanyan. Opt. Spectrosc., 118 (2) 290 (2015). DOI: 10.1134/S0030400X15020034
  10. A.N. Kosarev, V.V. Chaldyshev, A.A. Kondikov, T.A. Vartanyan, N.A. Toropov, I.A. Gladskikh, P.V. Gladskikh, I. Akimov, M. Bayer, V.V. Preobrazhenskii, M.A. Putyato, B.R. Semyagin. Opt. Spectrosc., 126 (5), 492 (2019). DOI: 10.1134/S0030400X19050151
  11. T.W. Ebbesen. Acc. Chem. Res., 49 (11), 2403 (2016). DOI: 10.1021/acs.accounts.6b00295
  12. D.M. Coles, Y. Yang, Y. Wang, R.T. Grant, R.A. Taylor, S.K. Saikin, A. Aspuru-Guzik, D.G. Lidzey, J.K.H. Tang, J.M. Smith. Nat. Commun., 5, 5561 (2014). DOI: 10.1038/ncomms6561
  13. D.M. Coles, N. Somaschi, P. Michetti, C. Clark, P.G. Lagoudakis, P.G. Savvidis, D.G. Lidzey. Nat. Mater., 13 (7), 712 (2014). DOI: 10.1038/nmat3950
  14. A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, T.W. Ebbesen. Nat. Commun., 6, 5981 (2015). DOI: 10.1038/ncomms6981
  15. A. Shalabney, J. George, H. Hiura, J.A. Hutchison, C. Genet, P. Hellwig, T.W. Ebbesen. Angew. Chem. Int. Ed., 54 (27), 7971 (2015). DOI: 10.1002/ange.201502979
  16. R.M.A. Vergauwe, J. George, T. Chervy, J.A. Hutchison, A. Shalabney, V.Y. Torbeev, T.W. Ebbesen. J. Phys. Chem. Lett., 7 (20), 4159 (2016). DOI: 10.1021/acs.jpclett.6b01869
  17. A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S.J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J.A. Hutchison, T.W. Ebbesen. Angewandte Chem., 128 (38), 11634 (2016). DOI: 10.1002/anie.201605504
  18. X. Liu, T. Galfsky, Z. Sun, F. Xia, E.C. Lin, Y.H. Lee, S. Kena-Cohen, V.M. Menon. Nat. Photonics, 9 (1), 30 (2015). DOI: 10.1038/nphoton.2014.304
  19. K.S. Daskalakis, S.A. Maier, R. Murray, S. Kena-Cohen. Nat. Mater., 13 (3), 271 (2014). DOI: 10.1038/nmat3874
  20. J.D. Plumhof, T. Stoferle, L. Mai, U. Scherf, R.F. Mahrt. Nat. Mater., 13 (3), 247 (2014). DOI: 10.1038/nmat3825
  21. C.P. Dietrich, A. Steude, L. Tropf, M. Schubert, N.M. Kronenberg, K. Ostermann, S. Hofling, M.C. Gather. Sci. Adv., 2 (8), e1600666 (2016). DOI: 10.1126/sciadv.1600666
  22. L. Tropf, C.P. Dietrich, S. Herbst, A.L. Kanibolotsky, P.J. Skabara, F. Wurthner, I.D. Samuel, M.C. Gather, S. Hofling. Appl. Phys. Lett., 110 (15), 153302 (2017). DOI: 10.1063/1.4978646
  23. D.M. Coles, Y. Yang, Y. Wang, R.T. Grant, R.A. Taylor, S.K. Saikin, A. Aspuru-Guzik, D.G. Lidzey, J.K.H. Tang, J. M. Smith. Nat. Commun., 5, 5561 (2014). DOI: 10.1038/ncomms6561
  24. D.M. Coles, N. Somaschi, P. Michetti, C. Clark, P.G. Lagoudakis, P.G. Savvidis, D.G. Lidzey. Nat. Mater., 13 (7), 712 (2014). DOI: 10.1038/nmat3950
  25. A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, T.W. Ebbesen. Nat. Commun., 6, 5981 (2015). DOI: 10.1038/ncomms6981
  26. J.P. Long, B.S. Simpkins. ACS Photonics, 2 (1), 130 (2014). DOI: 10.1021/ph5003347
  27. A. Konrad, A.M. Kern, M. Brecht, A.J. Meixner. Nano Lett., 15 (7), 4423 (2015). DOI: 10.1021/acs.nanolett.5b00766
  28. T. Ishii, F. Bencheikh, S. Forget, S. Chenais, B. Heinrich, D. Kreher, L.S. Vargas, K. Miyata, K. Onda, T. Fujihara, S. Kena-Cohen, F. Mathevet, C. Adachi. Advanced Optical Materials, 9 (22), 2101048 (2021). DOI: 10.1002/adom.202101048
  29. G. Stemo, H. Yamada, H. Katsuki, H. Yanagi. J. Phys. Chem. B, 126 (45), 9399 (2022). DOI: 10.1021/acs.jpcb.2c04004

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru