Oxygen Defects in Single-Wall Carbon Nanotubes for Near-Infrared Light Emitters
Eremin T. V.1, Eremina V. A.1, Obraztsova E.D.1,2
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia
A new peak with an increased intensity was observed in the photoluminescence (PL) spectra of single-walled carbon nanotubes (SWCNTs), exposed to UV irradiation in the presence of sodium hypochlorite. It was concluded on the basis of the spectroscopic data that the new PL peak is associated with oxygen defects in the SWCNT structure. The impact of environmental acidity on the optical properties of oxygen-doped SWCNTs (O-SWNTs) was investigated. An increased sensitivity of the new PL peak to the pH of the medium was observed. It was concluded that the usage of a pH-neutral medium is of crucial importance for the creation of IR light sources based on O-SWNTs. Keywords: single-walled carbon nanotubes, photoluminescence, localized exciton, acidity, infrared light emitters.
- Y.J. Miyauchi. Mater. Chem. C, 1 (40), 6499 (2013). DOI: 10.1039/c3tc00947e
- R.B. Weisman, S.M. Bachilo. Nano Lett., 3 (9), 1235 (2003). DOI: 10.1021/nl034428i
- T. Hertel, S. Himmelein, T. Ackermann, D. Stich, J. Crochet. ACS Nano, 4 (12), 7161 (2010). DOI:10.1021/nn101612b
- M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio Annu. Rev. Phys. Chem., 58 (1), 719 (2007). DOI:10.1146/annurev.physchem.58.032806.104628
- S. Ghosh, S.M. Bachilo, R.A. Simonette, K.M. Beckingham, R.B. Weisman. Science, 330 (6011), 1656 (2010). DOI:10.1126/science.1196382
- Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, K. Matsuda. Nat. Photonics, 7 (9), 715 (2013). DOI:10.1038/nphoton.2013.179
- Y. Piao, B. Meany, L.R. Powell, N. Valley, H. Kwon, G.C. Schatz, Y. Wang. Nat. Chem., 5 (10), 840 (2013). DOI:10.1038/nchem.1711
- T. Shiraki, T. Shiraishi, G. Juhasz, N. Nakashima. Sci. Rep., 6, 28393 (2016). DOI: 10.1038/srep28393
- C.W. Lin, S.M. Bachilo, Y. Zheng, U. Tsedev, S. Huang, R.B. Weisman, A.M. Belcher. Nat. Commun., 10 (1), (2019). DOI: 10.1038/s41467-019-10917-3
- Y. Iizumi, M. Yudasaka, J. Kim, H. Sakakita, T. Takeuchi, T. Okazaki. Sci. Rep., 8 (1), 1 (2018). DOI:10.1038/s41598-018-24399-8
- H. Kwon, M. Kim, B. Meany, Y. Piao, L.R. Powell, Y. Wang. Phys. J. Chem. C, 119 (7), 3733 (2015). DOI:10.1021/jp509546d
- J. Ramirez, M.L. Mayo, S. Kilina, S. Tretiak. Chem. Phys., 413, 89 (2013). DOI: 10.1016/j.chemphys.2012.10.010
- N.F. Hartmann, S.E. Yalcin, L. Adamska, E.H. Haroz, X. Ma, S. Tretiak, H. Htoon, S.K. Doorn. Nanoscale, 7 (48), 20521 (2015). DOI: 10.1039/c5nr06343d
- S. Kilina, J. Ramirez, S. Tretiak. Nano Lett., 12 (5), 2306 (2012). DOI: 10.1021/nl300165w
- A.H. Brozena, M. Kim, L.R. Powell, Y.H. Wang. Nat. Rev. Chem., 3 (6), 375 (2019). DOI: 10.1038/s41570-019-0103-5
- B.J. Gifford, S. Kilina, H. Htoon, S.K. Doorn, S. Tretiak. Acc. Chem. Res., 53 (9), 1791 (2020). DOI:10.1021/acs.accounts.0c00210
- H. Kwon, M. Kim, B. Meany, Y. Piao, L.R. Powell, Y. Wang. J. Phys. Chem. C, 119 (7), 3733 (2015). DOI:10.1021/jp509546d
- X. He, L. Sun, B.J. Gifford, S. Tretiak, A. Piryatinski, X. Li, H. Htoon, S.K. Doorn. Nanoscale, 11 (18), 9125 (2019). DOI: 10.1039/c9nr02175b
- S. Settele, F.J. Berger, S. Lindenthal, S. Zhao, A. Ali, E. Yumin, N.F. Zorn, A. Asyuda, M. Zharnikov, A. Hogele, J.Zaumseil. Nat. Commun., (2021), 1 (2021). DOI: 10.1038/s41467-021-22307-9
- A.H. Brozena, J.D. Leeds, Y. Zhang, J.T. Fourkas, Y. Wang. ACS Nano, 8 (5), 4239 (2014). DOI:10.1021/nn500894p
- T. Shiraki, Y. Miyauchi, K. Matsuda, N. Nakashima. Acc. Chem. Res., 53 (9), 1846 (2020). DOI:10.1021/acs.accounts.0c00294
- B.J. Gifford, X. He, M. Kim, H. Kwon, A. Saha, A.E. Sifain, Y. Wang, H. Htoon, S. Kilina, S.K. Doorn, S. Tretiak. Chem. Mater., 31 (17), 6950 (2019). DOI: 10.1021/acs.chemmater.9b01438
- Y. Kim, K.A. Velizhanin, X. He, I. Sarpkaya, Y. Yomogida, T. Tanaka, H. Kataura, S.K. Doorn, H. Htoon. J. Phys. Chem. Lett., 10 (6), 1423 (2019). DOI: 10.1021/acs.jpclett.8b03732
- H. Onitsuka, T. Fujigaya, N. Nakashima, T. Shiraki. Chem. --- A Eur. J., 24 (37), 9393 (2018). DOI:10.1002/chem.201800904
- M. Nutz, J. Zhang, M. Kim, H. Kwon, X. Wu, Y. Wang, A. HOgele. Nano Lett., 19 (10), 7078 (2019). DOI:10.1021/acs.nanolett.9b02553
- X. He, N.F. Hartmann, X. Ma, Y. Kim, R. Ihly, J.L. Blackburn, W. Gao, J. Kono, Y. Yomogida, A. Hirano, T. Tanaka, H. Kataura, H. Htoon, S.K. Doorn. Nat. Photonics, 11 (9), 577 (2017). DOI: 10.1038/nphoton.2017.119
- A. Saha, B.J. Gifford, X. He, G. Ao, M. Zheng, H. Kataura, H. Htoon, S. Kilina, S. Tretiak, S.K. Doorn. Nat. Chem., 10, 1089 (2018). DOI: 10.1038/s41557-018-0126-4
- X. Ma, N.F. Hartmann, J.K.S. Baldwin, S.K. Doorn, H. Htoon. Nat. Nanotechnol., 10 (8), 671 (2015). DOI:10.1038/nnano.2015.136
- M.E. Sykes, M. Kim, X. Wu, G.P. Wiederrecht, L. Peng, Y.H. Wang, D.J. Gosztola, X. Ma. ACS Nano, 13 (11), 13264 (2019). DOI: 10.1021/acsnano.9b06279
- H. Kwon, A. Furmanchuk, M. Kim, B. Meany, Y. Guo, G.C. Schatz, Y. Wang. J. Am. Chem. Soc., 138 (21), 6878 (2016). DOI: 10.1021/jacs.6b03618
- X. He, K.A. Velizhanin, G. Bullard, Y. Bai, J.-H. Olivier, N.F. Hartmann, B.J. Gifford, S. Kilina, S. Tretiak, H. Htoon, M.J. Therien, S.K. Doorn. ACS Nano, (July), acsnano.8b02909 (2018). DOI: 10.1021/acsnano.8b02909
- N.F. Hartmann, K.A. Velizhanin, E.H. Haroz, M. Kim, X. Ma, Y. Wang, H. Htoon, S.K. Doorn. ACS Nano, 10 (9), 8355 (2016). DOI: 10.1021/acsnano.6b02986
- M. Iwamura et al. ACS Nano, 8 (11), 11254 (2014). DOI: 10.1021/nn503803b
- T. Shiraishi, G. Juhasz, T. Shiraki, N. Akizuki, Y. Miyauchi, K. Matsuda, N. Nakashima. J. Phys. Chem. C, 120 (29), 15632 (2016). DOI: 10.1021/acs.jpcc.5b07841
- X. Ma, J.K.S. Baldwin, N.F. Hartmann, S.K. Doorn, H. Htoon. Adv. Funct. Mater., 25 (39), 6157 (2015). DOI:10.1002/adfm.201502580
- X. Ma, L. Adamska, H. Yamaguchi, S.E. Yalcin, S. Tretiak, S.K. Doorn, H. Htoon. Nat. Nanotechnol., 7 (July), 1 (2015). DOI: 10.1038/nnano.2011.227
- C.F. Chiu, W.A. Saidi, V.E. Kagan, A. Star. J. Am. Chem. Soc., 139 (13), 4859 (2017). DOI: 10.1021/jacs.7b00390
- N. Akizuki, S. Aota, S. Mouri, K. Matsuda, Y. Miyauchi. Nat. Commun., 6, 1 (2015). DOI: 10.1038/ncomms9920
- J. Zaumseil. Adv. Opt. Mater., 10 (2), (2022). DOI: 10.1002/adom.202101576
- X. He, H. Htoon, S.K. Doorn, W.H.P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, C. Voisin. Nat. Mater., 17 (8), 663 (2018). DOI: 10.1038/s41563-018-0109-2
- C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta. Phys. Rev. Lett., 93 (14), 1 (2004). DOI: 10.1103/PhysRevLett.93.147406
- F. Wang, M.Y. Sfeir, L. Huang, X.M.H. Huang, Y. Wu, J. Kim, J. Hone, S. O'Brien, L.E. Brus, T.F. Heinz. Phys. Rev. Lett., 96 (16), 1 (2006). DOI: 10.1103/PhysRevLett.96.167401
- J.G. Duque, M. Pasquali, L. Cognet, B. Lounis. ACS Nano, 3 (8), 2153 (2009). DOI: 10.1021/nn9003956
- Y. Miyauchi, R. Saito, K. Sato, Y. Ohno, S. Iwasaki, T. Mizutani, J. Jiang, S. Maruyama. Chem. Phys. Lett., 442 (4-6), 394 (2007). DOI: 10.1016/j.cplett.2007.06.018
- T. Koyama, S. Shimizu, Y. Miyata, H. Shinohara, A. Nakamura. Phys. Rev. B --- Condens. Matter Mater. Phys., 87 (16), 165430 (2013). DOI: 10.1103/PhysRevB.87.165430
- T. Eremin, E. Obraztsova. Phys. Status Solidi Basic Res., 255 (1), 1700272 (2017). DOI: 10.1002/pssb.201700272
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.