Oxygen Defects in Single-Wall Carbon Nanotubes for Near-Infrared Light Emitters
Eremin T. V.1, Eremina V. A.1, Obraztsova E.D.1,2
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny, Moscow oblast, Russia

PDF
A new peak with an increased intensity was observed in the photoluminescence (PL) spectra of single-walled carbon nanotubes (SWCNTs), exposed to UV irradiation in the presence of sodium hypochlorite. It was concluded on the basis of the spectroscopic data that the new PL peak is associated with oxygen defects in the SWCNT structure. The impact of environmental acidity on the optical properties of oxygen-doped SWCNTs (O-SWNTs) was investigated. An increased sensitivity of the new PL peak to the pH of the medium was observed. It was concluded that the usage of a pH-neutral medium is of crucial importance for the creation of IR light sources based on O-SWNTs. Keywords: single-walled carbon nanotubes, photoluminescence, localized exciton, acidity, infrared light emitters.
  1. Y.J. Miyauchi. Mater. Chem. C, 1 (40), 6499 (2013). DOI: 10.1039/c3tc00947e
  2. R.B. Weisman, S.M. Bachilo. Nano Lett., 3 (9), 1235 (2003). DOI: 10.1021/nl034428i
  3. T. Hertel, S. Himmelein, T. Ackermann, D. Stich, J. Crochet. ACS Nano, 4 (12), 7161 (2010). DOI:10.1021/nn101612b
  4. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio Annu. Rev. Phys. Chem., 58 (1), 719 (2007). DOI:10.1146/annurev.physchem.58.032806.104628
  5. S. Ghosh, S.M. Bachilo, R.A. Simonette, K.M. Beckingham, R.B. Weisman. Science, 330 (6011), 1656 (2010). DOI:10.1126/science.1196382
  6. Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, K. Matsuda. Nat. Photonics, 7 (9), 715 (2013). DOI:10.1038/nphoton.2013.179
  7. Y. Piao, B. Meany, L.R. Powell, N. Valley, H. Kwon, G.C. Schatz, Y. Wang. Nat. Chem., 5 (10), 840 (2013). DOI:10.1038/nchem.1711
  8. T. Shiraki, T. Shiraishi, G. Juhasz, N. Nakashima. Sci. Rep., 6, 28393 (2016). DOI: 10.1038/srep28393
  9. C.W. Lin, S.M. Bachilo, Y. Zheng, U. Tsedev, S. Huang, R.B. Weisman, A.M. Belcher. Nat. Commun., 10 (1), (2019). DOI: 10.1038/s41467-019-10917-3
  10. Y. Iizumi, M. Yudasaka, J. Kim, H. Sakakita, T. Takeuchi, T. Okazaki. Sci. Rep., 8 (1), 1 (2018). DOI:10.1038/s41598-018-24399-8
  11. H. Kwon, M. Kim, B. Meany, Y. Piao, L.R. Powell, Y. Wang. Phys. J. Chem. C, 119 (7), 3733 (2015). DOI:10.1021/jp509546d
  12. J. Ramirez, M.L. Mayo, S. Kilina, S. Tretiak. Chem. Phys., 413, 89 (2013). DOI: 10.1016/j.chemphys.2012.10.010
  13. N.F. Hartmann, S.E. Yalcin, L. Adamska, E.H. Haroz, X. Ma, S. Tretiak, H. Htoon, S.K. Doorn. Nanoscale, 7 (48), 20521 (2015). DOI: 10.1039/c5nr06343d
  14. S. Kilina, J. Ramirez, S. Tretiak. Nano Lett., 12 (5), 2306 (2012). DOI: 10.1021/nl300165w
  15. A.H. Brozena, M. Kim, L.R. Powell, Y.H. Wang. Nat. Rev. Chem., 3 (6), 375 (2019). DOI: 10.1038/s41570-019-0103-5
  16. B.J. Gifford, S. Kilina, H. Htoon, S.K. Doorn, S. Tretiak. Acc. Chem. Res., 53 (9), 1791 (2020). DOI:10.1021/acs.accounts.0c00210
  17. H. Kwon, M. Kim, B. Meany, Y. Piao, L.R. Powell, Y. Wang. J. Phys. Chem. C, 119 (7), 3733 (2015). DOI:10.1021/jp509546d
  18. X. He, L. Sun, B.J. Gifford, S. Tretiak, A. Piryatinski, X. Li, H. Htoon, S.K. Doorn. Nanoscale, 11 (18), 9125 (2019). DOI: 10.1039/c9nr02175b
  19. S. Settele, F.J. Berger, S. Lindenthal, S. Zhao, A. Ali, E. Yumin, N.F. Zorn, A. Asyuda, M. Zharnikov, A. Hogele, J.Zaumseil. Nat. Commun., (2021), 1 (2021). DOI: 10.1038/s41467-021-22307-9
  20. A.H. Brozena, J.D. Leeds, Y. Zhang, J.T. Fourkas, Y. Wang. ACS Nano, 8 (5), 4239 (2014). DOI:10.1021/nn500894p
  21. T. Shiraki, Y. Miyauchi, K. Matsuda, N. Nakashima. Acc. Chem. Res., 53 (9), 1846 (2020). DOI:10.1021/acs.accounts.0c00294
  22. B.J. Gifford, X. He, M. Kim, H. Kwon, A. Saha, A.E. Sifain, Y. Wang, H. Htoon, S. Kilina, S.K. Doorn, S. Tretiak. Chem. Mater., 31 (17), 6950 (2019). DOI: 10.1021/acs.chemmater.9b01438
  23. Y. Kim, K.A. Velizhanin, X. He, I. Sarpkaya, Y. Yomogida, T. Tanaka, H. Kataura, S.K. Doorn, H. Htoon. J. Phys. Chem. Lett., 10 (6), 1423 (2019). DOI: 10.1021/acs.jpclett.8b03732
  24. H. Onitsuka, T. Fujigaya, N. Nakashima, T. Shiraki. Chem. --- A Eur. J., 24 (37), 9393 (2018). DOI:10.1002/chem.201800904
  25. M. Nutz, J. Zhang, M. Kim, H. Kwon, X. Wu, Y. Wang, A. HOgele. Nano Lett., 19 (10), 7078 (2019). DOI:10.1021/acs.nanolett.9b02553
  26. X. He, N.F. Hartmann, X. Ma, Y. Kim, R. Ihly, J.L. Blackburn, W. Gao, J. Kono, Y. Yomogida, A. Hirano, T. Tanaka, H. Kataura, H. Htoon, S.K. Doorn. Nat. Photonics, 11 (9), 577 (2017). DOI: 10.1038/nphoton.2017.119
  27. A. Saha, B.J. Gifford, X. He, G. Ao, M. Zheng, H. Kataura, H. Htoon, S. Kilina, S. Tretiak, S.K. Doorn. Nat. Chem., 10, 1089 (2018). DOI: 10.1038/s41557-018-0126-4
  28. X. Ma, N.F. Hartmann, J.K.S. Baldwin, S.K. Doorn, H. Htoon. Nat. Nanotechnol., 10 (8), 671 (2015). DOI:10.1038/nnano.2015.136
  29. M.E. Sykes, M. Kim, X. Wu, G.P. Wiederrecht, L. Peng, Y.H. Wang, D.J. Gosztola, X. Ma. ACS Nano, 13 (11), 13264 (2019). DOI: 10.1021/acsnano.9b06279
  30. H. Kwon, A. Furmanchuk, M. Kim, B. Meany, Y. Guo, G.C. Schatz, Y. Wang. J. Am. Chem. Soc., 138 (21), 6878 (2016). DOI: 10.1021/jacs.6b03618
  31. X. He, K.A. Velizhanin, G. Bullard, Y. Bai, J.-H. Olivier, N.F. Hartmann, B.J. Gifford, S. Kilina, S. Tretiak, H. Htoon, M.J. Therien, S.K. Doorn. ACS Nano, (July), acsnano.8b02909 (2018). DOI: 10.1021/acsnano.8b02909
  32. N.F. Hartmann, K.A. Velizhanin, E.H. Haroz, M. Kim, X. Ma, Y. Wang, H. Htoon, S.K. Doorn. ACS Nano, 10 (9), 8355 (2016). DOI: 10.1021/acsnano.6b02986
  33. M. Iwamura et al. ACS Nano, 8 (11), 11254 (2014). DOI: 10.1021/nn503803b
  34. T. Shiraishi, G. Juhasz, T. Shiraki, N. Akizuki, Y. Miyauchi, K. Matsuda, N. Nakashima. J. Phys. Chem. C, 120 (29), 15632 (2016). DOI: 10.1021/acs.jpcc.5b07841
  35. X. Ma, J.K.S. Baldwin, N.F. Hartmann, S.K. Doorn, H. Htoon. Adv. Funct. Mater., 25 (39), 6157 (2015). DOI:10.1002/adfm.201502580
  36. X. Ma, L. Adamska, H. Yamaguchi, S.E. Yalcin, S. Tretiak, S.K. Doorn, H. Htoon. Nat. Nanotechnol., 7 (July), 1 (2015). DOI: 10.1038/nnano.2011.227
  37. C.F. Chiu, W.A. Saidi, V.E. Kagan, A. Star. J. Am. Chem. Soc., 139 (13), 4859 (2017). DOI: 10.1021/jacs.7b00390
  38. N. Akizuki, S. Aota, S. Mouri, K. Matsuda, Y. Miyauchi. Nat. Commun., 6, 1 (2015). DOI: 10.1038/ncomms9920
  39. J. Zaumseil. Adv. Opt. Mater., 10 (2), (2022). DOI: 10.1002/adom.202101576
  40. X. He, H. Htoon, S.K. Doorn, W.H.P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, C. Voisin. Nat. Mater., 17 (8), 663 (2018). DOI: 10.1038/s41563-018-0109-2
  41. C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta. Phys. Rev. Lett., 93 (14), 1 (2004). DOI: 10.1103/PhysRevLett.93.147406
  42. F. Wang, M.Y. Sfeir, L. Huang, X.M.H. Huang, Y. Wu, J. Kim, J. Hone, S. O'Brien, L.E. Brus, T.F. Heinz. Phys. Rev. Lett., 96 (16), 1 (2006). DOI: 10.1103/PhysRevLett.96.167401
  43. J.G. Duque, M. Pasquali, L. Cognet, B. Lounis. ACS Nano, 3 (8), 2153 (2009). DOI: 10.1021/nn9003956
  44. Y. Miyauchi, R. Saito, K. Sato, Y. Ohno, S. Iwasaki, T. Mizutani, J. Jiang, S. Maruyama. Chem. Phys. Lett., 442 (4-6), 394 (2007). DOI: 10.1016/j.cplett.2007.06.018
  45. T. Koyama, S. Shimizu, Y. Miyata, H. Shinohara, A. Nakamura. Phys. Rev. B --- Condens. Matter Mater. Phys., 87 (16), 165430 (2013). DOI: 10.1103/PhysRevB.87.165430
  46. T. Eremin, E. Obraztsova. Phys. Status Solidi Basic Res., 255 (1), 1700272 (2017). DOI: 10.1002/pssb.201700272

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru