Physics of the Solid State
Volumes and Issues
Short-range order in "disordered" aluminum solid solutions in α-iron
Ershov N. V. 1, Kleinerman N. M. 1, Lukshina V. A. 1, Chernenkov Y. P. 2, Shishkin D. A. 1,3, Smirnov O. P. 2, Semenov V. G.4
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
3Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
4Insitute of Chemistry, Saint Petersburg University, St. Petersburg, Russia
Email: nershov@imp.uran.ru, kleinerman@imp.uran.ru, lukshina@imp.uran.ru, Chernenkov_YP@pnpi.nrcki.ru, shishkin@imp.uran.ru, smirnov_op@pnpi.nrcki.ru

PDF
The atomic structure of soft magnetic iron-aluminum alloys is studied by X-ray diffraction and nuclear gamma-resonance spectroscopy. The concentration dependence of the body-centered cubic lattice constant and the short-range order (SRO) parameters in the region of a disordered solid solution is monitored. It is shown that in the concentration range from 3 to 18 at.% Al, the lattice constant increases almost linearly. Discrete decomposition of nuclear gamma resonance spectra makes it possible to determine such SRO parameters as the relative fractions of contributions from coordinations without Al atoms and with one, two, and three Al atoms in the first and second coordination shells. The deviation of the values of these fractions from the average statistical probabilities indicates the presence of a chemical order in the arrangement of atoms. The largest deviations are observed at 12 and 15 at.% Al. Conditions of preliminary heat treatment, such as quenching from the paramagnetic state and holding in the ferromagnetic state, give very similar values of the SRO parameters. The method is characterized by a high resolution in the hyperfine field, while having a rather high sensitivity for determining the intensity of individual contributions Keywords: soft magnetic alloys, disordered Fe-Al solid solution, local ordering, X-ray diffraction, Mossbauer effect, distribution of atoms over coordination shells.
  1. A.J. Bradley, A.H. Jay. Proc. R. Soc. London. Ser. A 136, 829, 210 (1932). https://doi.org/10.1098/rspa.1932.0075
  2. A.S. Freitas, D.F. de Albuquerque, I.P. Fittipaldi, N.O. Moreno. J. Magn. Magn. Mater. 362, 226 (2014). https://doi.org/10.1016/j.jmmm.2014.03.055
  3. A. Oubelkacem, I. Essaoudi, A. Ainane, F. Dujardin, J. Ricardo de Sousa, M. Saber. Physica A 389, 17, 3427 (2010). https://doi.org/10.1016/j.physa.2010.04.033
  4. R.D. Shull, H. Okamoto, P.A. Beck. Solid State Commun. 20, 9, 863 (1976). https://doi.org/10.1016/0038-1098(76)91292-8
  5. S. Takahashi, X.G. Li, A. Chiba. J. Phys.: Condens. Matter 8, 50, 11243 (1996). http://iopscience.iop.org/article/ 10.1088/0953-8984/8/50/045/pdf
  6. S. Takahashi, H. Onodera, X.G. Li, S. Miura. J. Phys.: Condens. Matter 9, 43, 9235 (1997). DOI: 10.1088/0953-8984/9/43/009
  7. K. Oki, S. Towata, M. Tamiya, T. Eguchi. Trans. Jpn Inst. Met. 22, 11, 771 (1981). https://doi.org/10.2320/matertrans1960.22.771
  8. K. Oki, H. Sagane, T. Eguchi. Jpn J. Appl. Phys. 13, 5, 753 (1974). http://iopscience.iop.org/article/10.1143/JJAP.13.753/meta
  9. S.M. Allen, J.W. Cahn. Acta Met. 24, 5, 425 (1976). https://doi.org/10.1016/0001-6160(76)90063-8
  10. S.M. Allen, J.W. Cahn. Scripta Metallurg. Mater. 10, 5, 451 (1976). https://doi.org/10.1016/0036-9748(76)90171-X
  11. S.M. Allen. Phil. Mag. 36, 1, 181 (1977). DOI: 10.1080/00318087708244456
  12. W. Koster, T. Godecke. Z. Metallkd. 71, 12, 765 (1980)
  13. K. Oki, A. Yamamura, M. Hasaka, T. Eguchi. Trans. Jpn Inst. Met. 18, 7, 520 (1977). https://doi.org/10.2320/matertrans1960.18.520
  14. M. Hasaka. Trans. Jpn Inst. Met. 21, 10, 660 (1980). https://doi.org/10.2320/matertrans1960.21.660
  15. H. Sagane, K. Oki, T. Eguchi. Trans. Jpn Inst. Met. 18, 6, 488 (1977). https://doi.org/10.2320/matertrans1960.18.488
  16. K. Oki, A. Yamamura, K. Kudo, T. Eguchi. T. Trans. Jpn. Inst. Met. 20, 8, 451 (1979). https://doi.org/10.2320/matertrans1960.20.451
  17. K. Han, I. Ohnuma, R. Kainuma. J. Alloys Comp. 668, 97 (2016). https://doi.org/10.1016/j.jallcom.2016.01.215
  18. U.R. Kattner, B.P. Burton. Phase Diagrams of Binary Iron Alloys, Al-Fe. ASM International, Materials Park, OH (1993). P. 12. http://www.asminternational.org/documents/10192/ 1850140/57751G_Frontmatter.pdf/c36eeb4e-d6ec-4804-b319-e5b0600ea65d
  19. J. Steinert. Physica Status Solidi B 21, 1, K13 (1967). https://doi.org/10.1002/pssb.19670210149
  20. H. Wagner, H. Gengnagel. Physica Status Solidi B 9, 1, 45 (1965). https://doi.org/10.1002/pssb.19650090105
  21. M. Sugihara. J. Phys. Soc. Jpn 15, 7, 1456 (1960). http://dx.doi.org/10.1143/JPSJ.15.1456
  22. H.J. Birkenbeil, R.W. Cahn. J. Appl. Phys. 32, 3, S362 (1961). http://dx.doi.org/10.1063/1.2000470
  23. H.J. Birkenbeil, R.W. Cahn. Proc. Phys. Soc. 79, 4, 831 (1962). DOI: 10.1088/0370-1328/79/4/321
  24. J.B. Restorff, M. Wun-Fogle, K.B. Hathaway, A.E. Clark, T.A. Lograsso, G. Petculescu. J. Appl. Phys. 111, 2, 023905 (2012). https://doi.org/10.1063/1.3674318
  25. A.E. Clark, J.B. Restorff, M. Wun-Fogle, D. Wu, T.A. Lograsso. J. Appl. Phys. 103, 7, 07B310-1 (2008). https://doi.org/10.1063/1.2831360
  26. H. Thomas. Z. Metallkd. 41, 6, 185 (1950)
  27. H. Thomas. Z. Physik 129, 2, 219 (1951)
  28. R. Kuentzler. J. Physique 44, 10, 1167 (1983). https://hal.archives-ouvertes.fr/jpa-00209700
  29. S.M. Allen, J.W. Cahn. Acta Met. 23, 9, 1017 (1975). https://doi.org/10.1016/0001-6160(75)90106-6
  30. G. Bertotti, F. Fiorillo. In: Magnetic Alloys for Technical Applications. Soft Magnetic Alloys, Invar and Elinvar Alloys / Ed. H.P.J. Wijn. Springer-Verlag (1994). 7.1.2.3.3 Magnetostriction constants. P. 55--58. https://link.springer.com/chapter/10.1007/ 10065028_17 (limited access)
  31. I.B. Kekalo, B.A. Samarin. Fizicheskoye metallovedeniye pretsizionnykh splavov. Splavy s osobymi magnitnymi svoystvami. Metallurgiya, M., (1989). 496 p. (in Russian)
  32. N.V. Ershov, Yu.P. Chernenkov, V.A. Lukshina, O.P. Smirnov. FTT 60, 9, 1619 (2018). (in Russian). DOI: 10.21883/FTT.2018.09.46375.028 [N.V. Ershov, Yu.P. Chernenkov, V.A. Lukshina, O.P. Smirnov. Phys. Solid State 60, 9, 1661 (2018). DOI: 10.1134/S106378341809010X]
  33. F. Adunka, M. Zehetbauer, L. Trieb. Physica Status Solidi A 62, 1, 213 (1980). https://doi.org/10.1002/pssa.2210620124
  34. H.J. Leamy. Acta Metallurgica 15, 12, 1839 (1967)
  35. M.V. Petrik, Yu.N. Gornostyrev. Phys. Met. Metallogr. 114, 6, 469 (2013). DOI: 10.1134/S0031918X13060112
  36. V.I. Iveronova, A.I. Minaev, V.M. Silonov. FMM 33, 5, 978 (1972) (in Russian)
  37. Yu.P. Chernenkov, N.V. Ershov, V.A. Lukshina. Phys. Solid State 61, 11, 1960 (2019). DOI: 10.1134/S1063783419110118
  38. Yu.P. Chernenkov, N.V. Ershov, V.A. Lukshina. Phys. Solid State 60, 12, 2370 (2018). DOI: 10.1134/S1063783419010050
  39. O.I. Gorbatov, A.R. Kuznetsov, Y.N. Gornostyrev, N.V. Ershov, V.A. Lukshina, A.V. Ruban, Y.P. Chernenkov, V.I. Fedorov. JETP 112, 5, 848 (2011)
  40. O.I. Gorbatov, Yu.N. Gornostyrev, A.R. Kuznetsov, A.V. Ruban. Solid State Phenomena 172--174, 618 (2011)
  41. K. Hilfrich, W. Kolker, W. Petry, O. Scharpf, E. Nembach. Acta Metallurg. Mater. 42, 3, 743 (1994)
  42. G.K. Wertheim. Mossbauer Effect: Principles and Applications. Academic Press Inc., N.Y. (1964)
  43. M.B. Stearns. Phys. Rev. B 6, 9, 3326 (1972)
  44. N.V. Ershov, N.M. Kleinerman, V.A. Lukshina, V.P. Pilyugin, V.V. Serikov. Phys. Solid State 51, 6, 1236 (2009)
  45. V.V. Serikov, N.M. Kleinerman, V.A. Lukshina, N.V. Ershov. Phys. Solid State 52, 2, 339 (2010)
  46. G. Bertotti, F. Fiorillo. In: Magnetic Alloys for Technical Applications. Soft Magnetic Alloys, Invar and Elinvar Alloys / Ed. H.P.J. Wijn. Springer-Verlag (1994). 7.1.2.2.1 Phase diagrams, lattice parameters and density, thermal expansion. P. 42. https://materials.springer.com/lb/docs/sm_lb_978-3-540-47246-9_11
  47. B.C. Rusakov. Mossbauer spectroscopy of locally heterogeneous systems. CCNSR INP NNC RK, Almaty (2000). 438 p. (in Russian)
  48. V. Pierron-Bohnes, M.C. Cadeville, A. Finel, R. Caudron, F. Solal. Physica B: Condens. Matter 180--181, 2, 811 (1992)
  49. V. Pierron-Bohnes, S. Lefebvre, M. Bessiere, A. Finel. Acta Metallurg. Mater. 38, 12, 2701 (1990). https://doi.org/10.1016/0956-7151(90)90284-N
  50. M.V. Petrik, Y.N. Gornostyrev. Phys. Met. Metallogr. 114, 6, 469 (2013)
  51. Th. Proffen, R.B. Neder. J. Appl. Crystallography 30, 2, 171 (1997)
  52. Yu.P. Chernenkov, N.V. Ershov, V.A. Lukshina, V.I. Fedorov, B.K. Sokolov. Physica B: Condens. Matter 396, 1--2, 220 (2007).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru