Anisotropy of the Paramagnetic Susceptibility in the 3D Dirac Semimetal Cd3As2 Caused by Chromium Impurity: the EPR on Cr3+ Ions
Goryunov Yu. V.
1, Nateprov A. N.
21Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan, Russia
2Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova
Email: gorjunov@kfti.knc.ru, nateprovalik@gmail.com
In the literature devoted to magnetic impurities in Dirac semimetals, the appearance of anisotropic and long-range non-oscillating contributions to the Ruderman-Kittel-Kasuya-Yosida interaction is predicted. These contributions are due to the hybridization of the wave functions of magnetic impurities with the wave functions of Dirac electrons, which have a linear dispersion law. We have studied electron paramagnetic resonance (EPR) in powder samples of topological 3D Dirac semimetal Cd3As2 with an admixture of chromium ions. Anisotropy of the magnetic susceptibility in the paramagnetic state was found from the behavior of the resonance field. The appearance of magnetic anisotropy in the paramagnetic state is associated with an increase in the contribution of the orbital moments of chromium ions Cr2+ and Cr3+ due to their interaction with the orbital moments of donor Dirac electrons, which have anomalously large values of g factors. Keywords: magnetic resonance, topological materials, magnetic impurities.
- Yu.V. Goryunov, A.N. Nateprov. Phys. Solid State 62, 1, 100 (2020)
- Yu.V. Goryunov, A.N. Nateprov. Phys. Solid State 63, 2, 223 (2021)
- M.A. Ruderman, C. Kittel. Phys. Rev. 96, 1, 99 (1954)
- N. Bloembergen, T.J. Rowland. Phys. Rev. 97, 6, 1679 (1955)
- H.-R. Chang, J. Zhou, S.-X. Wang, W.-Y. Shan, D. Xiao. Phys. Rev. B 92, 24, 241103(R) (2015)
- J.-H. Sun, D.-H. Xu, F.-C. Zhang, Y. Zhou. Phys. Rev. B 92, 19, 195124 (2015)
- D. Mastrogiuseppe, N. Sandler, S.E. Ulloa. Phys. Rev. B 93, 9, 094433 (2016)
- S.A. Altshuler, B.M. Kozyrev. Elektronnyi paramagnitnyi rezonans soedineniy elementov promezhutochnykh grupp. Nauka, M. (1972). 672 p. (in Russian)
- B.A. Volkov, O.A. Pankratov. JETP Lett. 42, 4, 145 (1985)
- V.V. Bannikov, V.Ya. Mitrofanov. Phys. Solid State 47, 8, 1532 (2005)
- S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buchner, R.J. Cava. Phys. Rev. Lett. 113, 2, 027603 (2014)
- M.N. Ali, Q. Gibson, S. Jeon, B.B. Zhou, A. Yazdani, R.J. Cava. Inorg. Chem. 53, 8, 4062 (2014)
- A.I. Efimov, L.P. Belorukova, I.V. Vasilkova, V.P. Chechev. Svoystva neorganicheskikh soyedineniy. Khimiya, L. (1983), 392 p. (in Russian)
- D.A. Akhmetzyanov, V.B. Dudnikova, E.V. Zharikov, E.R. Zhiteitsev, O.N. Zaitseva, A.A. Konovalov, V.F. Tarasov. Phys. Solid State 55, 3, 520 (2013)
- P.B. Oliete, V.M. Orera, P.J. Alonso. Phys. Rev. 53, 6, 3047 (1996)
- A.G. Avanesov, V.V. Badikov, G.S. Shakurov. Phys. Solid State 45, 8, 1451 (2003)
- L.K. Aminov, I.N. Kurkin, B.Z. Malkin. Phys. Solid State 55, 7, 1343 (2013)
- A. Abragam. Phys. Rev. 79, 3, 534 (1950)
- I. Stefaniuk, M. Bester, I.S. Virt, M. Kuzma. Acta Phys. Polonica A 108, 2, 413 (2005)
- B.L. Al'tshuler, A.G. Aronov, A.I. Larkin, D.E. Khmel'nitskii. JETP 54, 2, 411 (1981)
- N.A. Abdullaev, O.Z. Alekperov, Kh.V. Aligulieva, V.N. Zverev, A.M. Kerimova, N.T. Mamedov. Phys. Solid State 58, 9, 1870 (2016)
- E.B. Olshanetsky, Z.D. Kvon, G.M. Gusev, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal. JETP Lett. 91, 7, 347 (2010)
- Y. Kumar, V.P.S. Awana. J. Supercond. Novel Magn. 34, 5, 1303 (2021). https://doi.org/10.1007/s10948-021-05910-1
- X. Yuan, P. Cheng, L. Zhang, C. Zhang, Y. Wang, Y. Liu, Q. Sun, P. Zhou, D.W. Chang, Z. Hu, X. Wan, H. Yan, Z. Li, F. Xiu. Nano Lett. 17, 4, 2211 (2017)
- Y. Liu, R. Tiwari, Z. Jin, X. Yuan, C. Zhang, F. Chen, L. Li, Z. Xia, S. Sanvito, P. Zhou, F. Xiu. Phys. Rev. B 97, 8, 085303 (2018)
- R.K. Wangsness. Phys. Rev. 91, 5, 1085 (1953)
- R. Rai, J.-Y. Savard, B. Tousignant. Canadian J. Phys. 47, 11, 69 (1969)
- J.J. Krebs, G.H. Stauss. Phys. Rev. B 15, 1, 17 (1977)
- M.G. Brik, N.M. Avram. J. Mol. Struct. 838, 1--3, 193 (2007)
- L. Seijo, Z. Barandiaran. J. Chem. Phys. 94, 12, 8158 (1991)
- M. Venkatraman, J.P. Neumann. Bull. Alloy Phase Diagrams 11, 5, 424 (1990)
- V.I. Valkov, A.V. Golovchan, U. Aparajita, O. Roslyak. Adv. Mater. Sci. Eng. 2019, Art. ID 9649628, Hindawi (2019). DOI: https://www.hindawi.com/journals/amse/2019/9649628/
- A.I. Popoola, Y.A. Odusote. J. Sustainable Technol. 10, 2, 63 (2019). ISSN: 2251-0680
- B. Wang, Q. Lu, Y. Ge, K. Zhang, W. Xie, W.-M. Liu, Y. Liu. Phys. Rev. B 96, 13, 134116 (2017)
- H. Ofuchi, M. Mizuguchi, K. Ono, M. Oshima, H. Akinaga, T. Manago. Nucl. Instrum. Meth. Phys. Res. B 199, 227 (2003)
- C. Autieri, C. Noce. Phil. Mag. 97, 34, 3276 (2017). https://doi.org/10.1080/14786435.2017.1375607
- R. Khasanov, Z. Guguchia, I. Eremin, H. Luetkens, A. Amato, P.K. Biswas, C. Ruegg, M.A. Susner, A.S. Sefat, N.D. Zhigadlo, E. Morenzoni. Sci. Rep. 5, 13788 (2015). DOI: 10.1038/srep13788
- G. Cuono, C. Autieri, G. Guarnaccia, A. Avella, M. Cuoco, F. Forte, C. Noce. Eur. Phys. J. Spec. Top. 228, 631 (2019).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.