Physics of the Solid State
Volumes and Issues
The problems of increasing the thermoelectric figure of merit of polycrystalline misfit layered compounds on (GdxDy1-xS)zNbS2 example
Bakovets V. V.1, Sotnikov A. V.1
1Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: becambe@niic.nsc.ru, sotnikov@niic.nsc.ru

PDF
The lattice disorder of different architecture and dimensions influence on the thermoelectric properties (Seebeck coefficient S, resistivity rho, total thermal conductivity kappatot,, power factor S2/rho, figure of merit ZT) of the polycrystalline ternary sulfides MTS3 was studied. The high-temperature misfit layered compounds (MS)zNbS2 (MS is GdxDy1-xS solid solutions) were chosen as objects of the study. The variation of gadolinium concentration along the series x=0.0, 0.1, 0.2, 0.5, 1.0 allowed one to alter the short-range and the long-range order of the crystal lattice and to study their effect on thermoelectric parameters of (GdxDy1-xS)zNbS2. At low concentration of x=0.1 the crystallite size increases, cause the deformation stresses decrease and, thereby, leads to an abnormal changes of S, rho, kappatot values and ZT decrease. An increase of the gadolinium concentration (x=0.2-0.5) alters the electronic structure and the interatomic bonding character of the incommensurate subsystems [GdxDy1-xS] and [NbS2]. In this case, S and rho values remains practically unaffected, while the thermal conductivity value decreases by 40% and ZT increases by 2 times. The nature of this phenomenon and the anisotropy of the thermoelectric properties were discussed. Keywords:: misfit layers compounds, thermoelectric properties, lattice disorder, solid solution, crystallite boundaries.
  1. L.E. Bell. Science. 321, 5895, 1457 (2008)
  2. G. Tan, L.-D. Zhao, M.G. Kanatzidis. Chem. Rev. 116, 19, 12123 (2016)
  3. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis. Angew. Chem. Int. Ed. 48, 46, 8616 (2009)
  4. K. Nielsch, J. Bachmann, J. Kimling, H. Bottner. Adv. En. Mater. 1, 5, 713 (2011)
  5. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen. Energy Envir. Sci. 5, 1, 5147 (2012)
  6. W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, J.G. Snyder. Angew. Chem. Int. Ed. 55, 24, 6826 (2016)
  7. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao. Adv. Mater. 29, 14, 1605884 (2017)
  8. X. Su, P. Wei, H. Li, W. Liu, Y. Yan, P. Li, C. Su, C. Xie, W. Zhao, P. Zhai, Q. Zhang, X. Tang, C. Uher. Adv. Mater. 29, 1602013 (2017)
  9. M. Ohta, P. Jood, M. Murata, C.-H. Lee, A. Yamamoto, H. Obara. Adv. Mater. 9, 1801304 (2019)
  10. J.G. Snyder, E.S. Toberer. Nature Mater. 7, 2, 105 (2008)
  11. G.A. Slack. CRC Handbook of thermoelectrics. (1995). P. 407-440
  12. G.S. Nolas, D.T. Morelli, T.M. Tritt. Annu. Rev. Mater. Sci. 29, 89 (1999)
  13. T. Takabatake, K. Suekini, T. Nakayama, E. Kaneshita. Rev. Mod. Phys. 86, 2, 669 (2014)
  14. G.A. Wiegers. Prog. Solid State Chem. 24, 1 (1996)
  15. P. Jood, M. Ohta, O.I. Lebedev. Chem. Mater. 27, 22, 7719 (2015)
  16. V.V. Sokolov, V.V. Bakovetz, S.M. Luguev, N.V. Lugueva. Adv. Mater. Phys. Chem. 2, 25 (2012)
  17. Y. Miyazaki, H. Ogawa, T. Nakajo, Y. Kikuchii, K. Hayashi. J. Electron. Mater. 42, 1335 (2013)
  18. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis. Nature. 489, 7416, 414 (2012)
  19. V.A. Kulbachinsky, Ros. nanotekhnologii 14, 7-8, 30 (2019) (in Russian)
  20. D.K. Aswal, R. Basu, A. Singh. Energy Conv. Manag. 114, 50 (2016)
  21. Y.-P. Wang, B.-C. Qin, D.-Y. Wang, T. Hong, X. Gao, L.-D. Zhao. Rare Met. 40, 2, 2819 (2021)
  22. A.V. Sotnikov, V.V. Bakovets, A.Sh. Agazhanov, S.V. Stankus, D.P. Pichshur, V.V. Sokolov, FTT 60, 3, 482 (2018) (in Russian)
  23. S.J. Gomez, D. Cheikh, T. Vo, P.V. Allmen, K. Lee, M. Wood, G.J. Snyder, B.S. Dunn, J.-P. Fleurial, S.K. Bux. Chem. Mater. 31, 4460 (2019)
  24. V.V. Bakovets, A.V. Sotnikov, A.Sh. Agazhanov, S.V. Stankus, E.V. Korotaev, D.P. Pishchur, A.I. Shkatulov. J. Am. Ceram. Soc. 101, 10, 4773 (2018)
  25. A.V. Sotnikov, M. Ohta, P. Jood. ACS Omega. 5, 22, 13006 (2020)
  26. A. Meerschaut, P. Rabu, J. Rouxel. J. Solid State Chem. 78, 1, 35 (1989)
  27. R. Roesky, A. Meerschaut, P. Gressier, J. Rouxel. MRS Bull. 29, 9, 943 (1994)
  28. A. Jobst, S. Van Smaalen. Acta Cryst. 58, 179 (2002)
  29. A.V. Sotnikov, V.V. Bakovets, E.V. Korotaev, S.V. Trubina, V.I. Zaikovskiy. Mater. Res. Bull. 131, 110963 (2020)
  30. S. Van Smaalen. J. Phys. Condens. Mater. 3, 10, 1247 (1991)
  31. R.D. Shannon, C.T. Prewitt. Acta Crystallogr. Sect. B. 25, 5, 925 (1969)
  32. R.A. Svelin, Termodinamika tverdogo sostoyaniya, Metallurgiya, M., (1968), 314 p. (in Russian)
  33. Zh. Fridel', Dislokatsii. Mir, M., (1967), 643 p. (in Russian)
  34. G.K. Williamson, R.E. Smallman. Phil. Mag. 1, 1, 34 (1956)
  35. A.L. Patterson. Phys. Rev. 56, 978 (1939)
  36. G.K. Williamson, W.H. Hall. Acta Met. 1, 1, 22 (1953)
  37. Ch. Kittel, Elementarnaya fizika tverdogo tela, Nauka, M., (1965), 369 p. (in Russian)
  38. L.D. Landau, E.M. Lifshitz, Teoriya uprugosti, Nauka, M. (1987), 248 p. (in Russian)
  39. H.J. Goldsmid, F.A. Underwood. Adv. En. Conv. 7, 4, 297 (1968)
  40. B.M. Gol'tsman, V.A. Kudimov, I.A. Smirnov, Poluprovodnikovye termodinamicheskiye materialy na osnove Bi2Te3, Nauka, M., (1972), 320 p. (in Russian)
  41. I.A. Smirnov, V.I. Tamarchenko, Elektronnaya teploprovodnost' v metallakh i poluprovodnikakh, Nauka, L., (1977). 151 p. (in Russian)
  42. J. Rouxel, Y. Moelo, A. Lafond, F.J. Di Salvo, A. Meerschaut, R. Roesky. Inorg. Chem. 33, 15, 3358 (1994)
  43. K. Suzuki, T. Enoki, K. Imaeda. Solid State Commun. 78, 2, 73 (1991)
  44. T. Terashima, N. Kojima. J. Phys. Soc. Jpn. 63, 658 (1994)
  45. K. Suzuki, T. Kondo, T. Enoki. Synthetic Met. 55-57, 1741 (1993)
  46. O. Pena, P. Rabu, A. Meerschaut. J. Phys. Condens. Mater. 3, 9929 (1991)
  47. K.V. Shalimova, Fizika poluprovodnikov. Energoatomizdat, M. (1985), 392 p. (in Russian)
  48. K.A. Jackson, W. Shroter. Hadbook of semiconductor technology. Wiley-VCH, (2000). 829 p
  49. H. Statz, G.A. Demars, L. Davis, A. Adams. Phys. Rev. 101, 4, 1272 (1956)
  50. C.B. Vining. J. Appl. Phys. 69, 1, 331 (1991)
  51. J. He, M.G. Kanatzidis, V.P. Dravid. Mater. Today. 16, 5, 166 (2013)
  52. B. He, Y. Wang, M.Q. Arguilla, N.D. Cultrara, M.R. Scudder, J.E. Goldberger, W. Wind, J.P. Heremans. Nature Mater. 18, 568 (2019)
  53. T. Deng, T. Xing, M.K. Brod, Y. Sheng, P. Qiu, I. Energy Envir. Sci. 13, 9, 3041 (2020)
  54. H-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder. Appl. Mater. 3, 4, 041506 (2015)
  55. E.D. Devyatkova, I.A. Smirnov. Solid State Chem. 3, 8, 2310 (1961)
  56. L.P. Bulat, I.A. Drabkin, V.V. Karataev, V.B. Osvenskii, D.A. Pshenai-Severin. Phys. Solid State 52, 9, 1836 (2010)
  57. J.W. Sharp, S.J. Poon, H.J. Goldsmid. Phys. Status Solidi A. 187, 2, 507 (2001)
  58. P. Jood, M. Ohta, H. Nishiate, A. Yamamoto, O.I. Lebedev, D. Berthebaud, K. Suekuni, M. Kunii. Chem. Mater. 26, 8, 2684 (2014)
  59. E.S. Toberer, L.L. Baranowski, C. Dames. Annu. Rev. Mater. Res. 42, 20, 179 (2012)
  60. I.A. Smirnov, B.Ya. Moizes, E.D. Devijtkova, E.D. Nensberg, A.A. Averkin. Proc. Int. Conf. Semicond. Phys. (1960). 645 p
  61. I.S. Flyagina, A.A. Petrov, V.S. Pervov, Uspekhi khimii 85, 6, 610618 (2016) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru