States of silicon nanoclusters containing carbon impurities
Tashmetov M. Yu. 1, Makhkamov Sh. M.1, Umarova F. T. 1, Normurodov A. B.1, Sulaimanov N. T. 1, Khugaev A. V. 1, Kholmedov Kh. M. 2
1Institute of Nuclear Physics, Uzbek Academy of Sciences, Tashkent, Uzbekistan
2Tashkent University of Information Technologies, Tashkent, Uzbekistan
Email: sulaymon@inp.uz

PDF
The structural and electronic states of defective complexes in the Si29 cluster with the participation of carbon and hydrogen atoms were determined by the method of non-conventional strong binding (MNSB) in combination with the method of molecular dynamics. It is shown that carbon atoms in silicon clusters form a bridge bond with two silicon atoms and localized in a hexagonal position at the center of the cell, forming a defect of the Si29 : Ci type. The introduction of hydrogen into a silicon cluster results in the formation of a defective Ci-H-Si complex and a decrease of binding energy of the Si29 : Ci defect. Based on the calculations, it was found that presence of leads to carbon gives shallow levels in the band gap of nano-silicon, and the defective carbon-hydrogen complex in a hydrogenated cluster, depending on the charge state of the defective complex. Moreover this exhibits both deep and shallow levels. Keywords: MD and MNSB methods, silicon nano-clusters, hydrogenated cluster, structural defects, ab initio methods, carbon and hydrogen atoms, spatial structure, shallow and deep levels.
  1. M.G. Mil'vidskii, V.V. Chaldyshev. Semiconductors, 32, 457 (1998)
  2. K.L. Brower. Phys. Rev. B, 9, 2607 (1974)
  3. G.D. Wotkins, K.L. Brower. Phys. Rev. Lett., 36, 1329 (1976)
  4. A. Mattoni, F. Bernardini, L. Colombo. Phys. Rev. B, 66, 195214 (1-6) (2002)
  5. D. Tsuchiya, K. Sueoka, H. Yamamoto. Phys. Status Solidi A, 216, 1 (2019)
  6. A.Ya. Nashel'skii. Proizvodstvo poluprovodnikovykh materialov (M., Metallurgy, 1989) p. 272
  7. V.I. Fistul'. Atomy legiruyushchikh primesei v poluprovodnikakh (M., Fizmatlit, 2004) (in Russian)
  8. Z.M. Khakimov, P.L. Tereshchuk, N.T. Sulaymonov, F.T. Umarova, M.T. Swihart. Phys. Rev. B, 72, 115335 (2005); M.Yu. Tashmetov, A.B. Normurodov, N.T. Sulaymanov, Sh. Makhkamov, F.T. Umarova, A.V. Khugaev, Kh.M. Kholmedov. J. Nano-Electron. Phys., 10, 0301 (1-6) (2018)
  9. Z.M. Khakimov. Comput. Phys. Commun., 147, 733 (2002)
  10. K. Raghavachari, C.M. Rohlfing. Chem. Phys. Lett., 167, 559 (1990); Run-Ning Zhao, Zi-Chen Lu, Rui Chenaand Ju-Guang Han. Phys. Chem. Chem. Phys., 21, 25302 (2019)
  11. P. Deak, T. Frauenheim, M.R. Pederson (eds). Computer Simulation of Materials at Atomic Level (Berlin, 2000) Chap. 3; T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz. A Self-Consistent Charge Density-Functional Based Tight-Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology
  12. Z.M. Khakimov. J. Phys.: Conf. Ser., 29, 177 (2006)
  13. V.P. Markevich, B. Hourahine, R.C. Newman, R. Jones, Mats Kleverman, Lennart Lindstrom, L.I. Murin, M. Suezawa, S. Oberg, P.R. Briddon. // Publication in Lund University research portal /http://www.scientific.net/3-908450-83-7/. 221 (2), 1 (2003)
  14. M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin, C.R. Kagan, V.I. Klimov, A.L. Rogach, P. Reiss, D.J. Milliron, Ph. Guyot-Sionnest, G. Konstantatos, W.J. Parak, T. Hyeon, B.A. Korgel, Ch.B. Murray, W. Heiss. ACS Nano 9, 1012 (2015)
  15. E. Van Lenthe, E.J. Baerends. J. Comp. Chem., 24, 1142 (2003)
  16. A.K. Shiryaev. Kvantovaya mekhanika i kvantovaya khimiya (Samara, Samar. Gos. Tekh. Univ., 2014) (in Russian)
  17. L.V. Spivak, N.E. Shchepina. Fiziko-khimicheskie osnovy protsessov mikro- i nanotekhnologii (Perm, Permsk. Gos. Nats. Issled. Univ., 2018), Part 1 (in Russian)
  18. D.M. Fleetwood, S.T. Pantelides, R.D. Schrimpf. Defects in Microelectronic Materials and Devices (N.Y., Taylor \& Francis Group, 2009) p. 737
  19. Vl. Kolkovskya, R. Stubnerb, K. Gwozdzc, J. Weber. Physica B, 535, 128 (2018)
  20. Z. Zhou, R.A. Friesner, L. Brus. J. Am. Chem. Soc., 125, 15599 (2003)
  21. Sh. Makhamov, F.T. Umarova, A.B. Normurodov, N.T. Sulaymanov, O.B. Ismailova. Uzbek. Phys. J., 18, 82 (2016)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru