Tashmetov M. Yu. 1, Makhkamov Sh. M.1, Umarova F. T. 1, Normurodov A. B.1, Sulaimanov N. T. 1, Khugaev A. V. 1, Kholmedov Kh. M. 2
1Institute of Nuclear Physics, Uzbek Academy of Sciences, Tashkent, Uzbekistan
2Tashkent University of Information Technologies, Tashkent, Uzbekistan
Email: sulaymon@inp.uz
The structural and electronic states of defective complexes in the Si29 cluster with the participation of carbon and hydrogen atoms were determined by the method of non-conventional strong binding (MNSB) in combination with the method of molecular dynamics. It is shown that carbon atoms in silicon clusters form a bridge bond with two silicon atoms and localized in a hexagonal position at the center of the cell, forming a defect of the Si29 : Ci type. The introduction of hydrogen into a silicon cluster results in the formation of a defective Ci-H-Si complex and a decrease of binding energy of the Si29 : Ci defect. Based on the calculations, it was found that presence of leads to carbon gives shallow levels in the band gap of nano-silicon, and the defective carbon-hydrogen complex in a hydrogenated cluster, depending on the charge state of the defective complex. Moreover this exhibits both deep and shallow levels. Keywords: MD and MNSB methods, silicon nano-clusters, hydrogenated cluster, structural defects, ab initio methods, carbon and hydrogen atoms, spatial structure, shallow and deep levels.
- M.G. Mil'vidskii, V.V. Chaldyshev. Semiconductors, 32, 457 (1998)
- K.L. Brower. Phys. Rev. B, 9, 2607 (1974)
- G.D. Wotkins, K.L. Brower. Phys. Rev. Lett., 36, 1329 (1976)
- A. Mattoni, F. Bernardini, L. Colombo. Phys. Rev. B, 66, 195214 (1-6) (2002)
- D. Tsuchiya, K. Sueoka, H. Yamamoto. Phys. Status Solidi A, 216, 1 (2019)
- A.Ya. Nashel'skii. Proizvodstvo poluprovodnikovykh materialov (M., Metallurgy, 1989) p. 272
- V.I. Fistul'. Atomy legiruyushchikh primesei v poluprovodnikakh (M., Fizmatlit, 2004) (in Russian)
- Z.M. Khakimov, P.L. Tereshchuk, N.T. Sulaymonov, F.T. Umarova, M.T. Swihart. Phys. Rev. B, 72, 115335 (2005); M.Yu. Tashmetov, A.B. Normurodov, N.T. Sulaymanov, Sh. Makhkamov, F.T. Umarova, A.V. Khugaev, Kh.M. Kholmedov. J. Nano-Electron. Phys., 10, 0301 (1-6) (2018)
- Z.M. Khakimov. Comput. Phys. Commun., 147, 733 (2002)
- K. Raghavachari, C.M. Rohlfing. Chem. Phys. Lett., 167, 559 (1990); Run-Ning Zhao, Zi-Chen Lu, Rui Chenaand Ju-Guang Han. Phys. Chem. Chem. Phys., 21, 25302 (2019)
- P. Deak, T. Frauenheim, M.R. Pederson (eds). Computer Simulation of Materials at Atomic Level (Berlin, 2000) Chap. 3; T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz. A Self-Consistent Charge Density-Functional Based Tight-Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology
- Z.M. Khakimov. J. Phys.: Conf. Ser., 29, 177 (2006)
- V.P. Markevich, B. Hourahine, R.C. Newman, R. Jones, Mats Kleverman, Lennart Lindstrom, L.I. Murin, M. Suezawa, S. Oberg, P.R. Briddon. // Publication in Lund University research portal /http://www.scientific.net/3-908450-83-7/. 221 (2), 1 (2003)
- M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin, C.R. Kagan, V.I. Klimov, A.L. Rogach, P. Reiss, D.J. Milliron, Ph. Guyot-Sionnest, G. Konstantatos, W.J. Parak, T. Hyeon, B.A. Korgel, Ch.B. Murray, W. Heiss. ACS Nano 9, 1012 (2015)
- E. Van Lenthe, E.J. Baerends. J. Comp. Chem., 24, 1142 (2003)
- A.K. Shiryaev. Kvantovaya mekhanika i kvantovaya khimiya (Samara, Samar. Gos. Tekh. Univ., 2014) (in Russian)
- L.V. Spivak, N.E. Shchepina. Fiziko-khimicheskie osnovy protsessov mikro- i nanotekhnologii (Perm, Permsk. Gos. Nats. Issled. Univ., 2018), Part 1 (in Russian)
- D.M. Fleetwood, S.T. Pantelides, R.D. Schrimpf. Defects in Microelectronic Materials and Devices (N.Y., Taylor \& Francis Group, 2009) p. 737
- Vl. Kolkovskya, R. Stubnerb, K. Gwozdzc, J. Weber. Physica B, 535, 128 (2018)
- Z. Zhou, R.A. Friesner, L. Brus. J. Am. Chem. Soc., 125, 15599 (2003)
- Sh. Makhamov, F.T. Umarova, A.B. Normurodov, N.T. Sulaymanov, O.B. Ismailova. Uzbek. Phys. J., 18, 82 (2016)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.