Magomedov M. N.
11Institute for Geothermal Problems and Renewable Energy – branch of Joint Institute for High Temperatures of Russian Academy Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru
A new analytical (i.e., without computer modeling) method for calculating the dependence of the melting temperature Tm of a single-component crystal on pressure P is proposed. The method is based on the delocalization melting criterion and does not contain fitting constants. The baric dependences of the melting temperature Tm(P) and its pressure derivative T'm(P) for gold, platinum and niobium in the pressure range: P=0-1000 GPa were calculated by this method. It was shown that the dependences calculated by this method for gold and platinum agree better with the experimental data than the dependences obtained by computer simulation methods. For niobium, the calculated dependence Tm(P) turned out to be steeper, i.e., the value T'm(P) turned out to be larger than in the experiment. It was indicated that this discrepancy might be due both to a decrease in the Lindemann parameter with increasing pressure and to a redistribution of electrons on the s-d-orbitals during compression of transition metals with a BCC structure. Keywords: melting point, pressure, interatomic interaction, gold, platinum, niobium.
- N.R. Mitra, D.L. Decker, H.B. Vanfleet. Phys. Rev. 161, 3, 613 (1967). https://doi.org/10.1103/PhysRev.161.613
- J. Akella, G.C. Kennedy. J. Geophys. Res. 76, 20, 4969 (1971). https://doi.org/10.1029/JB076i020p04969
- P.W. Mirwald, G.C. Kennedy. J. Geophys. Res.: Solid Earth 84, B12, 6750 (1979). https://doi.org/10.1029/JB084iB12p06750
- D. Errandonea. Appl. Phys. 108, 3, 033517 (2010). https://aip.scitation.org/doi/abs/10.1063/1.3468149
- G. Weck, V. Recoules, J.A. Queyroux, F. Datchi, J. Bouchet, S. Ninet, G. Garbarino, M. Mezouar, P. Loubeyre. Phys. Rev. B 101, 1, 014106 (2020). https://doi.org/10.1103/PhysRevB.101.014106
- P. Parisiades. Crystals 11, 4, 416 (2021). https://doi.org/10.3390/cryst11040416
- Q.S. Mei, K. Lu. Progress. Mater. Sci. 52, 8, 1175 (2007). https://doi.org/10.1016/j.pmatsci.2007.01.001
- J. Ma, W. Li, G. Yang, S. Zheng, Y. He, X. Zhang, X. Zhang, X. Zhang. Phys. Earth. Planetary Interiors 309, 106602 (2020). https://doi.org/10.1016/j.pepi.2020.106602
- D. Ashwini, V.S. Sharma, K. Sunil. Eur. Phys. J. Plus 137, 545, 1 (2022). https://doi.org/10.1140/epjp/s13360-022-02733-4
- D.V. Minakov, M.A. Paramonov, G.S. Demyanov, V.B. Fokin, P.R. Levashov. Phys. Rev. B 106, 21, 214105 (2022). https://doi.org/10.1103/PhysRevB.106.214105
- F.A. Lindemann. Physikalische Zeitschrift 11, 14, 609 (1910)
- J.J. Gilvarry. Phys. Rev. 102, 2, 308 (1956). https://doi.org/10.1103/PhysRev.102.308
- J.P. Adams, R.M. Stratt. J. Chem. Phys. 93, 2, 1332 (1990). https://doi.org/10.1063/1.459145
- J.P. Adams, R.M. Stratt. J. Chem. Phys. 93, 2, 1358 (1990). https://doi.org/10.1063/1.459146
- H. Lowen, T. Palberg, R. Simon. Phys. Rev. Lett. 70, 10, 1557 (1993). DOI: https://doi.org/10.1103/PhysRevLett.70.1557
- H. Lowen. Phys. Rev. E 53, 1, R29 (1996). https://doi.org/10.1103/PhysRevE.53.R29
- S.A. Khrapak. Phys. Rev. Res. 2, 1, 012040 (2020). https://doi.org/10.1103/PhysRevResearch.2.012040
- M.N. Magomedov. Tech. Phys. Lett. 33, 10, 837 (2007). https://doi.org/10.1134/S1063785007100094
- M.N. Magomedov. Phys. Met. Metallography 105, 2, 116 (2008). https://doi.org/10.1134/S0031918X08020038
- D.S. Sanditov. JETP 115, 1, 112 (2012). https://doi.org/10.1134/S1063776112060143
- D.S. Sanditov, B.S. Sydykov. Tech. Phys. 59, 5, 682 (2014). https://doi.org/10.1134/S1063784214050272
- M.N. Magomedov. Phys. Solid State 64, 4, 469 (2022). https://doi.org/10.21883/PSS.2022.04.53504.240
- Handbook of Mathematical Functions / Eds M. Abramowitz, I. Stegun. National Bureau of Standards, N.Y. (1964). 1046 p
- A.G. Chirkov, A.G. Ponomarev, V.G. Chudinov. Tech. Phys. 49, 2, 203 (2004). https://doi.org/10.1134/1.1648956
- G.M. Poletaev, M.D. Starostenkov. Phys. Solid State 51, 4, 727 (2009). https://doi.org/10.1134S106378340904012X
- M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022). https://doi.org/10.21883/PSS.2022.07.54579.319
- M.N. Magomedov. Tech. Phys. 58, 9, 1297 (2013). https://doi.org/10.1134/S106378421309020X
- L.A. Girifalco. Statistical Physics of Materials. J. Wiley \& Sons Ltd., N.Y. (1973). 346 p
- R. Briggs, F. Coppari, M.G. Gorman, R.F. Smith, S.J. Tracy, A.L. Coleman, A. Fernandez-Panella, M. Millot, J.H. Eggert, D.E. Fratanduono. Phys. Rev. Lett. 123, 4, 045701 (2019). https://doi.org/10.1103/PhysRevLett.123.045701
- D.E. Fratanduono, M. Millot, D.G. Braun, S.J. Ali, A. Fernandez-Panella, C.T. Seagle, J.-P. Davis, J.L. Brown, Y. Akahama, R.G. Kraus, M.C. Marshall, R.F. Smith, E.F. O'Bannon III, J.M. Mcnaney, J.H. Eggert. Science 372, 6546, 1063 (2021). https://doi.org/10.1126/science.abh0364
- M.N. Magomedov. Phys. Solid State 63, 9, 1495 (2021). https://doi.org/10.1134/S1063783421090250
- H.K. Hieu, N.N. Ha. AIP Adv. 3, 11, 112125 (2013). https://doi.org/10.1063/1.4834437
- P.D. Tan, P.D. Tam. Vacuum 198, 110815 (2022). https://doi.org/10.1016/j.vacuum.2021.110815
- N. Van Nghia, N.D. Chinh, H.K. Hieu. Vacuum 202, 111189 (2022). https://doi.org/10.1016/j.vacuum.2022.111189
- D. Errandonea. Phys. Rev. B 87, 5, 054108 (2013). https://doi.org/10.1103/PhysRevB.87.054108
- N.N. Patel, M. Sunder. AIP Conf. Proc. AIP Publ. LLC 1942, 1, 030007 (2018). https://doi.org/10.1063/1.5028588
- S. Anzellini, V. Monteseguro, E. Bandiello, A. Dewaele, L. Burakovsky, D. Errandonea. Sci. Rep. 9, 13034 (2019). https://doi.org/10.1038/s41598-019-49676-y
- Z.M. Geballe, N. Holtgrewe, A. Karandikar, E. Greenberg, V.B. Prakapenka, A.F. Goncharov. Phys. Rev. Mater. 5, 3, 033803 (2021). https://doi.org/10.1103/PhysRevMaterials.5.033803
- J.-M. Joubert, J.-C. Crivello, G. Deffrennes. Calphad 74, 102304 (2021). https://doi.org/10.1016/j.calphad.2021.102304.hal-03295408
- D. Errandonea, L. Burakovsky, D.L. Preston, S.G. MacLeod, D. Santamari a-Perez, S. Chen, H. Cynn, S.I. Simak, M.I. McMahon, J.E. Proctor, M. Mezouar. Commun. Mater. 1, 1, 60 (2020). https://doi.org/10.1038/s43246-020-00058-2
- M.R. Fellinger, H. Park, J.W. Wilkins. Phys. Rev. B 81, 14, 144119 (2010). https://doi.org/10.1103/PhysRevB.81.144119
- S.P. Kramynin, E.N. Ahmedov. Phys. Met. Metallography 120, 11, 1027 (2019). https://doi.org/10.1134/S0031918X19110097
- S.P. Kramynin. Phys. Met. Metallography 123, 2, 107 (2022). https://doi.org/10.1134/S0031918X22020065
- H.K. Hieu, H. Hoang, P.T.M. Hanh, T.T. Hai. Vacuum 206, 111507 (2022). https://doi.org/10.1016/j.vacuum.2022.111507
- C. Yang, Y. Zhang, N.P. Salke, Y. Bi, A. Alatas, A.H. Said, J. Hong, J.F. Lin. Phys. Rev. B 105, 9, 094105 (2022). https://doi.org/10.1103/PhysRevB.105.094105
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.