Physics of the Solid State
Volumes and Issues
Change in the melting temperature of metals with an increase in pressure
Magomedov M. N. 1
1Institute for Geothermal Problems and Renewable Energy – branch of Joint Institute for High Temperatures of Russian Academy Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
A new analytical (i.e., without computer modeling) method for calculating the dependence of the melting temperature Tm of a single-component crystal on pressure P is proposed. The method is based on the delocalization melting criterion and does not contain fitting constants. The baric dependences of the melting temperature Tm(P) and its pressure derivative T'm(P) for gold, platinum and niobium in the pressure range: P=0-1000 GPa were calculated by this method. It was shown that the dependences calculated by this method for gold and platinum agree better with the experimental data than the dependences obtained by computer simulation methods. For niobium, the calculated dependence Tm(P) turned out to be steeper, i.e., the value T'm(P) turned out to be larger than in the experiment. It was indicated that this discrepancy might be due both to a decrease in the Lindemann parameter with increasing pressure and to a redistribution of electrons on the s-d-orbitals during compression of transition metals with a BCC structure. Keywords: melting point, pressure, interatomic interaction, gold, platinum, niobium.
  1. N.R. Mitra, D.L. Decker, H.B. Vanfleet. Phys. Rev. 161, 3, 613 (1967). https://doi.org/10.1103/PhysRev.161.613
  2. J. Akella, G.C. Kennedy. J. Geophys. Res. 76, 20, 4969 (1971). https://doi.org/10.1029/JB076i020p04969
  3. P.W. Mirwald, G.C. Kennedy. J. Geophys. Res.: Solid Earth 84, B12, 6750 (1979). https://doi.org/10.1029/JB084iB12p06750
  4. D. Errandonea. Appl. Phys. 108, 3, 033517 (2010). https://aip.scitation.org/doi/abs/10.1063/1.3468149
  5. G. Weck, V. Recoules, J.A. Queyroux, F. Datchi, J. Bouchet, S. Ninet, G. Garbarino, M. Mezouar, P. Loubeyre. Phys. Rev. B 101, 1, 014106 (2020). https://doi.org/10.1103/PhysRevB.101.014106
  6. P. Parisiades. Crystals 11, 4, 416 (2021). https://doi.org/10.3390/cryst11040416
  7. Q.S. Mei, K. Lu. Progress. Mater. Sci. 52, 8, 1175 (2007). https://doi.org/10.1016/j.pmatsci.2007.01.001
  8. J. Ma, W. Li, G. Yang, S. Zheng, Y. He, X. Zhang, X. Zhang, X. Zhang. Phys. Earth. Planetary Interiors 309, 106602 (2020). https://doi.org/10.1016/j.pepi.2020.106602
  9. D. Ashwini, V.S. Sharma, K. Sunil. Eur. Phys. J. Plus 137, 545, 1 (2022). https://doi.org/10.1140/epjp/s13360-022-02733-4
  10. D.V. Minakov, M.A. Paramonov, G.S. Demyanov, V.B. Fokin, P.R. Levashov. Phys. Rev. B 106, 21, 214105 (2022). https://doi.org/10.1103/PhysRevB.106.214105
  11. F.A. Lindemann. Physikalische Zeitschrift 11, 14, 609 (1910)
  12. J.J. Gilvarry. Phys. Rev. 102, 2, 308 (1956). https://doi.org/10.1103/PhysRev.102.308
  13. J.P. Adams, R.M. Stratt. J. Chem. Phys. 93, 2, 1332 (1990). https://doi.org/10.1063/1.459145
  14. J.P. Adams, R.M. Stratt. J. Chem. Phys. 93, 2, 1358 (1990). https://doi.org/10.1063/1.459146
  15. H. Lowen, T. Palberg, R. Simon. Phys. Rev. Lett. 70, 10, 1557 (1993). DOI: https://doi.org/10.1103/PhysRevLett.70.1557
  16. H. Lowen. Phys. Rev. E 53, 1, R29 (1996). https://doi.org/10.1103/PhysRevE.53.R29
  17. S.A. Khrapak. Phys. Rev. Res. 2, 1, 012040 (2020). https://doi.org/10.1103/PhysRevResearch.2.012040
  18. M.N. Magomedov. Tech. Phys. Lett. 33, 10, 837 (2007). https://doi.org/10.1134/S1063785007100094
  19. M.N. Magomedov. Phys. Met. Metallography 105, 2, 116 (2008). https://doi.org/10.1134/S0031918X08020038
  20. D.S. Sanditov. JETP 115, 1, 112 (2012). https://doi.org/10.1134/S1063776112060143
  21. D.S. Sanditov, B.S. Sydykov. Tech. Phys. 59, 5, 682 (2014). https://doi.org/10.1134/S1063784214050272
  22. M.N. Magomedov. Phys. Solid State 64, 4, 469 (2022). https://doi.org/10.21883/PSS.2022.04.53504.240
  23. Handbook of Mathematical Functions / Eds M. Abramowitz, I. Stegun. National Bureau of Standards, N.Y. (1964). 1046 p
  24. A.G. Chirkov, A.G. Ponomarev, V.G. Chudinov. Tech. Phys. 49, 2, 203 (2004). https://doi.org/10.1134/1.1648956
  25. G.M. Poletaev, M.D. Starostenkov. Phys. Solid State 51, 4, 727 (2009). https://doi.org/10.1134S106378340904012X
  26. M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022). https://doi.org/10.21883/PSS.2022.07.54579.319
  27. M.N. Magomedov. Tech. Phys. 58, 9, 1297 (2013). https://doi.org/10.1134/S106378421309020X
  28. L.A. Girifalco. Statistical Physics of Materials. J. Wiley \& Sons Ltd., N.Y. (1973). 346 p
  29. R. Briggs, F. Coppari, M.G. Gorman, R.F. Smith, S.J. Tracy, A.L. Coleman, A. Fernandez-Panella, M. Millot, J.H. Eggert, D.E. Fratanduono. Phys. Rev. Lett. 123, 4, 045701 (2019). https://doi.org/10.1103/PhysRevLett.123.045701
  30. D.E. Fratanduono, M. Millot, D.G. Braun, S.J. Ali, A. Fernandez-Panella, C.T. Seagle, J.-P. Davis, J.L. Brown, Y. Akahama, R.G. Kraus, M.C. Marshall, R.F. Smith, E.F. O'Bannon III, J.M. Mcnaney, J.H. Eggert. Science 372, 6546, 1063 (2021). https://doi.org/10.1126/science.abh0364
  31. M.N. Magomedov. Phys. Solid State 63, 9, 1495 (2021). https://doi.org/10.1134/S1063783421090250
  32. H.K. Hieu, N.N. Ha. AIP Adv. 3, 11, 112125 (2013). https://doi.org/10.1063/1.4834437
  33. P.D. Tan, P.D. Tam. Vacuum 198, 110815 (2022). https://doi.org/10.1016/j.vacuum.2021.110815
  34. N. Van Nghia, N.D. Chinh, H.K. Hieu. Vacuum 202, 111189 (2022). https://doi.org/10.1016/j.vacuum.2022.111189
  35. D. Errandonea. Phys. Rev. B 87, 5, 054108 (2013). https://doi.org/10.1103/PhysRevB.87.054108
  36. N.N. Patel, M. Sunder. AIP Conf. Proc. AIP Publ. LLC 1942, 1, 030007 (2018). https://doi.org/10.1063/1.5028588
  37. S. Anzellini, V. Monteseguro, E. Bandiello, A. Dewaele, L. Burakovsky, D. Errandonea. Sci. Rep. 9, 13034 (2019). https://doi.org/10.1038/s41598-019-49676-y
  38. Z.M. Geballe, N. Holtgrewe, A. Karandikar, E. Greenberg, V.B. Prakapenka, A.F. Goncharov. Phys. Rev. Mater. 5, 3, 033803 (2021). https://doi.org/10.1103/PhysRevMaterials.5.033803
  39. J.-M. Joubert, J.-C. Crivello, G. Deffrennes. Calphad 74, 102304 (2021). https://doi.org/10.1016/j.calphad.2021.102304.hal-03295408
  40. D. Errandonea, L. Burakovsky, D.L. Preston, S.G. MacLeod, D. Santamari a-Perez, S. Chen, H. Cynn, S.I. Simak, M.I. McMahon, J.E. Proctor, M. Mezouar. Commun. Mater. 1, 1, 60 (2020). https://doi.org/10.1038/s43246-020-00058-2
  41. M.R. Fellinger, H. Park, J.W. Wilkins. Phys. Rev. B 81, 14, 144119 (2010). https://doi.org/10.1103/PhysRevB.81.144119
  42. S.P. Kramynin, E.N. Ahmedov. Phys. Met. Metallography 120, 11, 1027 (2019). https://doi.org/10.1134/S0031918X19110097
  43. S.P. Kramynin. Phys. Met. Metallography 123, 2, 107 (2022). https://doi.org/10.1134/S0031918X22020065
  44. H.K. Hieu, H. Hoang, P.T.M. Hanh, T.T. Hai. Vacuum 206, 111507 (2022). https://doi.org/10.1016/j.vacuum.2022.111507
  45. C. Yang, Y. Zhang, N.P. Salke, Y. Bi, A. Alatas, A.H. Said, J. Hong, J.F. Lin. Phys. Rev. B 105, 9, 094105 (2022). https://doi.org/10.1103/PhysRevB.105.094105

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru