Physics of the Solid State
Volumes and Issues
Control of bistability of two uniaxial spin transfer oscillators with field coupling and RLC load
Kuptsov P. V. 1
1Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
Email: kupav@mail.ru

PDF
Two uniaxial spin transfer oscillators with field coupling and RLC loads are considered. This system can demonstrate synchronized as well as non-synchronized oscillations. There is an area of bistability in the parameter space where these two regimes coexist. The mechanism of the bistability control is suggested. It is shown that if the RLC circuits are tuned in such a way that after the start their currents slowly and monotonically decay from high negative magnitudes to zero the oscillators forget their initial states and arrive at the vicinities of their fixed points. It provides the controllable start of the oscillations so that the bistability is suppressed in favor of either synchronous or non-synchronous regimes. Keywords: magnetic moment precession, coupled oscillators, dipole interaction, bistability, controllable initial conditions.
  1. I.D. Mayergoyz, G. Bertotti, C. Serpico. Nonlinear magnetization dynamics in nanosystems. Elsevier (2009). 466 p
  2. Z. Zeng, G. Finocchio, H. Jiang. Nanoscale 5, 6, 2219 (2013)
  3. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph. Nature 425, 6956, 380 (2003)
  4. W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, T.J. Silva. Phys. Rev. Lett. 92, 027201 (2004)
  5. J.C. Slonczewski. JMMM 159, 1, L1 (1996)
  6. L. Berger. Phys. Rev. B 54, 9353 (1996)
  7. R. Skomski. Simple models of magnetism. Oxford University Press (2008). 336 p
  8. D. Li, Y. Zhou, C. Zhou, B. Hu. Phys. Rev. B 82, 140407 (2010)
  9. A. Pikovsky. Phys. Rev. E 88, 032812 (2013)
  10. M.A. Zaks, A. Pikovsky. Physica D 335, 33 (2016)
  11. M.A. Zaks, A. Pikovsky. Sci. Rep. 7, 1, 4648 (2017)
  12. M.A. Zaks, A. Pikovsky. Eur. Phys. J. B 92, 7, 160 (2019)
  13. S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek, J.A. Katine. Nature 437, 7057, 389 (2005)
  14. S.M. Rezende, F.M. de Aguiar, R.L. Rodiguez-Suarez, A. Azevedo. Phys. Rev. Lett. 98, 087202 (2007)
  15. M. Lakshmanan. Phil. Trans. Royal Soc. A 369, 1939, 1280 (2011)
  16. A. Slavin, V. Tiberkevich. IEEE Transact. Magn. 45, 4, 1875 (2009)
  17. A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization. A universal concept in nonlinear sciences. Cambridge University Press (2002) 500 p
  18. B. Georges, J. Grollier, M. Darques, V. Cros, C. Deranlot, B. Marcilhac, G. Faini, A. Fert. Phys. Rev. 101, 017201 (2008)
  19. P.V. Kuptsov. Regular Chaotic Dynam. 27, 6, 697 (2022)
  20. D.A. Tatarsky, O.G. Udalov, A.A. Fraerman. ZHETF163, 3, 366 (2023). (in Russian)
  21. J. Grollier, V. Cros, A. Fert. Phys. Rev. B 73, 060409 (2006)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru