Physics of the Solid State
Volumes and Issues
Heating of magnetic powders in the ferromagnetic resonance mode at a frequency of 8.9 GHz
Stolyar S. V. 1,2, Li O. A. 1,2, Nikolaeva E. D. 1, Boev N. M. 3,2, Vorotynov A. M. 3, Velikanov D. A. 3, Iskhakov R. S. 3, P'yankov V. F. 1, Knyazev Yu. V. 3, Bayukov O. A. 3, Shokhrina A. O.1,2, Molokeev M. S. 2,3, Vasiliev A. D. 2,3
1Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: stol@iph.krasn.ru, oali@sfu-kras.ru, nikolaeva-lena@mail.ru, boev@iph.krasn.ru, sasa@iph.krasn.ru, dpona1@gmail.com, rauf@iph.krasn.ru, pyankov.vf@ksc.krasn.ru, yuk@iph.krasn.ru, helg@iph.krasn.ru, anna.shohrina152@gmail.com, msmolokeev@sfu-kras.ru, adva@iph.krasn.ru

PDF
Nickel ferrite nanoparticles 4 nm in size were synthesized by chemical deposition. Subsequent annealing at T=700oC for 5 h led to an increase in the particle size to 63 nm. The Mossbauer spectra and the frequency-field dependences of ferromagnetic resonance have been measured. It has been shown that freshly prepared powders are superparamagnetic at room temperature. The kinetic dependences of the heating of nanoparticles in the ferromagnetic resonance mode at a frequency of 8.9 GHz were measured. It was found that the maximum rate of temperature increase in this mode for a ferromagnetic powder is an order of magnitude greater than for the superparamagnetic state (1.2 and 0.13 K/s, respectively). The latter is determined by the saturation magnetization of the studied powders. Keywords: ferromagnetic resonance, superparamagnetic powders, relaxation frequency, frequency-field dependence, heating of powders.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru