Heating of magnetic powders in the ferromagnetic resonance mode at a frequency of 8.9 GHz
Stolyar S. V.
1,2, Li O. A.
1,2, Nikolaeva E. D.
1, Boev N. M.
3,2, Vorotynov A. M.
3, Velikanov D. A.
3, Iskhakov R. S.
3, P'yankov V. F.
1, Knyazev Yu. V.
3, Bayukov O. A.
3, Shokhrina A. O.
1,2, Molokeev M. S.
2,3, Vasiliev A. D.
2,31Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: stol@iph.krasn.ru, oali@sfu-kras.ru, nikolaeva-lena@mail.ru, boev@iph.krasn.ru, sasa@iph.krasn.ru, dpona1@gmail.com, rauf@iph.krasn.ru, pyankov.vf@ksc.krasn.ru, yuk@iph.krasn.ru, helg@iph.krasn.ru, anna.shohrina152@gmail.com, msmolokeev@sfu-kras.ru, adva@iph.krasn.ru
Nickel ferrite nanoparticles 4 nm in size were synthesized by chemical deposition. Subsequent annealing at T=700oC for 5 h led to an increase in the particle size to 63 nm. The Mossbauer spectra and the frequency-field dependences of ferromagnetic resonance have been measured. It has been shown that freshly prepared powders are superparamagnetic at room temperature. The kinetic dependences of the heating of nanoparticles in the ferromagnetic resonance mode at a frequency of 8.9 GHz were measured. It was found that the maximum rate of temperature increase in this mode for a ferromagnetic powder is an order of magnitude greater than for the superparamagnetic state (1.2 and 0.13 K/s, respectively). The latter is determined by the saturation magnetization of the studied powders. Keywords: ferromagnetic resonance, superparamagnetic powders, relaxation frequency, frequency-field dependence, heating of powders.
- A.S. Kamzin, D.S. Nikam, S.H. Pawar. FTT 59, 1, 149 (2017). (in Russian). 10.21883/ftt.2017.01.43966.185
- M. Peiravi, H. Eslami, M. Ansari, H. Zare-Zardini. J. Indian Chem. Soc. 99, 1, 100269 (2022). 10.1016/j.jics.2021.100269
- Seongtae Bae, Sang Won Lee, A. Hirukawa, Y. Takemura, Youn Haeng Jo, Sang Geun Lee. IEEE Trans Nanotechnol. 8, 1, 86 (2009). 10.1109/TNANO.2008.2007214
- K. Ohara, T. Moriwaki, K. Nakazawa, T. Sakamoto, K. Nii, M. Abe, Y. Ichiyanagi. AIP Adv. 13, 2, 025238 (2023). 10.1063/9.0000477
- W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim. Sci. Technol. Adv. Mater. 16, 2, 023501 (2015). 10.1088/1468-6996/16/2/023501
- M. Shen, H. Cai, X. Wang, X. Cao, K. Li, S.H. Wang, R. Guo, L. Zheng, G. Zhang, X. Shi. Nanotechnology 23, 10, 105601 (2012). 10.1088/0957-4484/23/10/105601
- J.-H. Lee, Y. Kim, S.-K. Kim. Sci. Rep. 12, 1, 5232 (2022). 10.1038/s41598-022-09159-z
- S. Bae, S.W. Lee, Y. Takemura. Appl. Phys. Lett. 89, 25, 252503 (2006). 10.1063/1.2420769
- A. Tomitaka, H. Kobayashi, T. Yamada, M. Jeun, S. Bae, Y. Takemura. J. Phys.: Conf. Ser. 200. Institute of Physics Publishing (2010)
- E. Umut, M. Coskun, F. Pineider, D. Berti, H. Gungunes. J. Coll. Interface Sci. 550, 199 (2019). 10.1016/j.jcis.2019.04.092
- C.E. Demirci Donmez, P.K. Manna, R. Nickel, S. Akturk, J. van Lierop. ACS Appl. Mater. Interfaces 11, 7, 6858 (2019). 10.1021/acsami.8b22600
- G. Stefanou, D. Sakellari, K. Simeonidis, T. Kalabaliki, M. Angelakeris, C. Dendrinou-Samara, O. Kalogirou. IEEE Trans. Magn. 50, 12, 1 (2014). 10.1109/TMAG.2014.2345637
- O.M. Lemine, N. Madkhali, M. Hjiri, N.A. All, M.S. Aida. Ceram. Int. 46, 18, 28821 (2020). 10.1016/j.ceramint.2020.08.047
- A.E. Deatsch, B.A. Evans. J. Magn. Magn. Mater. 354, 163 (2014). 10.1016/j.jmmm.2013.11.006
- M.V. Lebedev. Vestn. Permskogo un-ta. Fizika 4, 14 (2021). (in Russian). 10.17072/1994-3598-2021-4-14-20
- S.V. Vonsovsky. Ferromagnitnyy rezonans. Yavleniye rezonansnogo pogloshcheniya vysokochastotnogo elektromagnitnogo polya v ferromagnitnykh veshchestvakh. Fiz.-mat. lit., M. (1961). (in Russian)
- N. Yoshikawa, T. Kato. J. Phys. 43, 42, 425403 (2010). 10.1088/0022-3727/43/42/425403
- S. Krupivcka. Physik der Ferrite und der verwandten magnetischen Oxide. Vieweg+Teubner Verlag, Wiesbaden (1973)
- S.V. Stolyar, O.A. Li, E.D. Nikolaeva, A.M. Vorotynov, D.A. Velikanov, Y.V. Knyazev, O.A. Bayukov, R.S. Iskhakov, V.F. Pyankov, M.N. Volochaev. FMM 124, 2, 182 (2023). (In Russian)
- P. Hernandez-Gomez, J.M. Munoz, M.A. Valente, C. Torres, C. de Francisco. EPJ Web Conf. 40, 17003 (2013). 10.1051/epjconf/20134017003
- M.E. Mata-Zamora, H. Montiel, G. Alvarez, J.M. Saniger, R. Zamorano, R. Valenzuela. J. Magn. Magn. Mater. 316, 2, e532 (2007). 10.1016/j.jmmm.2007.03.011
- R. Valenzuela, S. Ammar, F. Herbst, R. Ortega-Zempoalteca. Nanosci. Nanotechnology Lett. 3, 4, 598 (2011). 10.1166/nnl.2011.1207
- G.V. Kurlyandskaya, S.M. Bhagat, C. Luna, M. Vazquez. J. Appl. Phys. 99, 10, 104308 (2006). 10.1063/1.2191740
- V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, K. Ghosh, S. Tyagi. J. Appl. Phys. 86, 2, 1067 (1999). 10.1063/1.371146
- S.V. Stolyar, L.A. Chekanova, R.N. Yaroslavtsev, S.V. Komogortsev, Y.V. Gerasimova, O.A. Bayukov, M.N. Volochaev, R.S. Iskhakov, I.V. Garanzha, O.S. Kolovskaya, M.S. Bairmani, T.N. Zamay. J. Phys. Conf. Ser. 1399, 2, 022026 (2019). 10.1088/1742-6596/1399/2/022026.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.