Up-conversion luminescence of CaF2-SrF2-HoF3 solind solutions upon excitation of the 5I7 level of Ho3+ ions
Bubnov M. K.1, Bukarev S. А. 1, Gushchin S. V. 1, Konyushkin V. А.2, Kuznetsov S. V. 2,3, Lyapin A. A.1, Nakladov А. N. 2, Ryabochkina P. A.1, Voronov V. V.2, Fedorov P. P.2
1Mordovia State University, Saransk, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
3Kazan Federal University, Kazan, Tatarstan, Russia

PDF
Up-conversion luminescence spectra of CaF2-SrF2-HoF3 single crystals were investigated upon excitation by laser radiation with a wavelength of 1940 nm to the 5I7 level of Ho3+ ions. The CaF2-SrF2-HoF3 single crystals were grown by the vertical directional crystallization method. For these excitation conditions, quantitative characteristics of the up-conversion luminescence of Ho3+ ions were determined: energy yield, chromaticity coordinates, and correlated color temperatures. The possibility of increasing the efficiency of solar cells due to the conversion of infrared radiation in CaF2-SrF2-HoF3 crystals was considered. Keywords: up-conversion luminescence, rare-earth ions, fluorides, luminescence yield. DOI: 10.61011/EOS.2023.03.56182.4085-22
  1. J.C. Goldschmidt, S. Fischer. Adv. Opt. Mater., 3 (4), 510 (2015). DOI: 10.1002/adom.201500024
  2. T. Trupke, M.A. Green. J. Appl. Phys., 92 (7), 4117 (2002). DOI: 10.1063/1.1505677
  3. C.M. Johnson, G.J. Conibeer. J. Appl. Phys., 112 (10), 103108 (2012). DOI: 10.1063/1.4766386
  4. J.A. Briggs, A.C. Atre, J.A. Dionne. J. Appl. Phys., 113 (12), 124509 (2013). DOI: 10.1063/1.4796092
  5. M. Rudiger, S. Fischer, A. Frank J. Ivaturi, B.S. Richards, K.W. Kramer, M. Hermle, J.C. Goldschmidt. Sol. Energy Mater. Sol. Cells., 128, 57 (2014). DOI: 10.1016/j.solmat.2014.05.014
  6. S. Fuentes, M. Vega, M. Arias, P. Morales. Mater. Lett., 296, 129889 (2021). DOI: 10.1016/j.matlet.2021.129889
  7. B.S. Richards, D. Hudry, D. Busko, A. Turshatov, I.A. Howard. Chem. Rev., 121 (15), 9165 (2021). DOI: 10.1021/acs.chemrev.1c00034
  8. C.L.M. Hofmann, S. Fischer, E.H. Eriksen, B. Bl?si, C. Reitz, D. Yazicioglu, I.A. Howard, B.S. Richards, J.C. Goldschmidt. Nat. Commun., 12 (104), 1 (2021). DOI: 10.1038/s41467-020-20305-x
  9. S. Fischer, R. Martin-Rodri guez, F. Benjamin, K.W. Kramer, A. Meijerink, J.C. Goldschmidt. J. Lumin., 153, 281 (2014). DOI: 10.1016/j.jlumin.2014.03.047
  10. M. Pokhrel, G.A. Kumar, D.K. Sardar. J. Mater. Chem. A., 1 (38), 11595 (2013). DOI: 10.1039/C3TA12205K
  11. R. Marti n-Rodr i guez, S. Fischer, A. Ivaturi, B. Froehlich, K.W. Kramer, J.C. Goldschmidt, B.S. Richards, A. Meijerink. Chem. Mater., 25 (9), 1912 (2013). DOI: 10.1021/cm4005745
  12. A.A. Lyapin, P.A. Ryabochkina, S.V. Gushchin, S.V. Kuznetsov, M.V. Chernov, V.Yu. Proydakova, V.V. Voronov, P.P. Fedorov. Opt. Spectr., 125 (4), 537 (2018). DOI: 10.1134/S0030400X18100132
  13. A.A. Lyapin, S.V. Gushchin, S.V. Kuznetsov, P.A. Ryabochkina, A.S. Ermakov, V.Yu. Proydakova, V.V. Voronov, P.P. Fedorov. Opt. Mater. Express., 8 (7), 1863 (2018). DOI: 10.1364/OME.8.001863
  14. A.A. Lyapin, P.A. Ryabochkina, S.V. Gushchin, M.N. Jarkov, A.S. Yermakov, V.M. Kyashkin, S.V. Prytkov, A.V. Atanova. Opt. i spektr., 128 (2), 204 (2020). (in Russian). DOI: 10.61011/EOS.2023.03.56182.4085-22 [A.A. Lyapin, P.A. Ryabochkina, S.V. Gushchin, M.N. Zharkov, A.S. Ermakov, V.M. Kyashkin, S.V. Prytkov, A.V. Atanova. Opt. Spectr., 128 (2), 200 (2020). DOI: 10.1134/S0030400X20020137]
  15. A. Ivaturi, S.K.W. MacDougall, R. Marti n-Rodri guez, M. Quintanilla, J. Marques-Hueso, K.W. Kramer, A. Meijerink, B.S. Richards. J. Appl. Phys., 114 (1), 013505 (2013). DOI: 10.1063/1.4812578
  16. S. Fischer, B. Frohlich, H. Steinkemper, K.W. Kramer, J.C. Goldschmidt. Sol. Energy Mater. Sol. Cells., 122, 197 (2014). DOI: 10.1016/j.solmat.2013.12.001
  17. A. Boccolini, R. Faoro, E. Favilla, S. Veronesi, M. Tonelli. J. Appl. Phys., 114 (6), 064904 (2013). DOI: 10.1063/1.4817171
  18. S. Fischer, E. Favilla, M. Tonelli, J.C. Goldschmidt. Sol. Energy Mater. Sol. Cells., 136, 127 (2015). DOI: 10.1016/j.solmat.2014.12.023
  19. P. Gibart, F. Auzel, J-C. Guillaume, K. Zahraman. Jpn. J. Appl. Phys., 35 (8), 4401 (1996). DOI: 10.1143/jjap.35.4401
  20. A. Shalav, B.S. Richards, T. Trupke, R.P. Corkish, K.W. Kamer, H.U. Gudel, M.A. Green. In: Proc. of the 3rd World Conf. on Photovoltaic Energy Convers (IEEE, 2003), vol. 1, p. 248. DOI: 10.1109/WCPEC.2003.1305268
  21. A. Shalav, B.S. Richards, T. Trupke. Appl. Phys. Lett., 86 (1), 013505 (2005). DOI: 10.1063/1.1844592
  22. S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K.W. Kramer, B.S. Richards, J.C. Goldschmidt. EEE J. Photovoltaics., 4 (1), 183 (2014). DOI: 10.1109/JPHOTOV.2013.2282744
  23. G.E. Arnaoutakis, S. Fischer, A. Ivaturi, B. Frohlich, M. Rudiger, A. Richter, K.W. Kramer, B.S. Richards, J.C. Goldschmidt. Opt. Express., 22 (S2), A452 (2014). DOI: 10.1364/OE.22.00A452
  24. K.K. Markose, R. Anjana, A. Antony, M.K. Jayaraj. J. Lumin., 204, 448 (2018). DOI: 10.1016/j.jlumin.2018.08.005
  25. D. Liu, Q. Wang, Q. Wang. Beilstein J. Nanotechnol., 9, 2788 (2018). DOI: 10.3762/bjnano.9.260
  26. S. Fischer, A. Ivaturi, P. Jakob, K.W. Kramer, R. Marti n-Rodri guez, A. Meijerink, B.S. Richards, J.C. Goldschmidt. Opt. Mater., 84, 389 (2018). DOI: 10.1016/j.optmat.2018.05.072
  27. R. Singh, E. Madirov, D. Busko, I.M. Hossain, V.A. Konyushkin, A.N. Nakladov, S.V. Kuznetsov, A. Farooq, S. Gharibzadeh, U.W. Paetzold, B.S. Richards, A. Turshatov. ACS Appl. Mater. Interfaces., 13 (46), 54874 (2021). DOI: 10.1021/acsami.1c13477
  28. C.M. Verber, D.R. Grieser, W.H. Jones. J. Appl. Phys., 42 (7), 2767 (1971). DOI: 10.1063/1.1660621
  29. S. Ryszczyn ska, T. Grzyb. Methods Appl. Fluoresc., 10 (2), 024001 (2022). DOI: 10.1088/2050-6120/ac4999
  30. A.A. Lyapin, P.A. Ryabochkina, A.N. Chabushkin, S.N. Ushakov, P.P. Fedorov. J. Lumin., 167, 120 (2015). DOI: 10.1016/j.jlumin.2015.06.011
  31. A.A. Lyapin, P.A. Ryabochkina, S.N. Ushakov, P.P. Fedorov. Quantum Electron., 44 (6), 602 (2014) DOI: 10.1070/QE2014v044n06ABEH015423
  32. A.A. Lyapin, S.V. Kuznetsov, P.A. Ryabochkina, A.P. Merculov, M.V. Chernov, Yu.A. Ermakova, A.A. Luginina, P.P. Fedorov. Laser Phys. Lett., 14 (7), 076003 (2017). DOI: 10.1088/1612-202X/aa7418
  33. P.P. Fedorov, A.A. Luginina, S.V. Kuznetsov, V.V. Voronov, A.A. Lyapin, A.S. Ermakov, D.V. Pominova, A.D. Yapryntsev, V.K. Ivanov, A.A. Pynenkov, K.N. Nishchev. Cellulose, 26 (4), 1 (2019). DOI: 10.1007/s10570-018-2194-4
  34. A. Guhur, S.D. Jackson. Opt. Express., 18 (19), 20164 (2010). DOI: 10.1364/OE.18.020164
  35. A.P. Savikin, I.Yu. Perunin, S.V. Kurashkin, A.V. Budruev, I.A. Grishin. Opt. i spektr., 125 (4), 468 (2018). (in Russian). DOI: 10.61011/EOS.2023.03.56182.4085-22 [A.P. Savikin, I.Yu. Perunin, S.V. Kurashkin, A.V. Budruev, I.A. Grishin. Opt. Spectr., 125 (4), 487 (2018). DOI: 10.1134/S0030400X18100211]
  36. A.P. Savikin, A.S. Egorov, A.V. Budruev, I.Yu. Perunin, I.A. Grishin. Tech. Phys. Lett., 42 (11), 1083 (2016). DOI: 10.1134/S1063785016110079
  37. A.P. Savikin, K.E. Sumachev, S.V. Kurashkin, O.V. Krasheninnikova, A.V. Budruev, I.A. Grishin. Laser Phys. Lett., 17 (4), 045701 (2020). DOI: 10.1088/1612-202X/ab7346
  38. I. Richman. J. Chem. Phys., 41 (9), 2836 (1964). DOI: 10.1063/1.1726360
  39. P.P. Fedorov, V.V. Osiko. Bulk Crystal Growth of Electronic, Optical \& Optoelectronic Materials, ed. by P. Capper (John Wiley \& Sons, Ltd, England, 2005), ch. 11, p. 339-352. DOI: 10.1002/9780470012086.ch11
  40. P.P. Fedorov, I.I. Buchinskaya. Russ. Chem. Rev., 81 (1), 1 (2012). DOI: 10.1070/RC2012v081n01ABEH004207
  41. S.V. Kuznetsov, P.P. Fedorov. Inorg. Mater., 44 (13), 1434 (2008). DOI: 10.1134/S0020168508130037
  42. W.D. Wright. Trans. Opt. Soc., 30 (4), 141 (1929). DOI: 10.1088/1475-4878/30/4/301
  43. J. Guild. Phil. Trans. R. Soc. A, 230, 149 (1931). DOI: 10.1098/rsta.1932.0005
  44. A.V. Ryabova, D.V. Pominova, A.V. Krut'ko, M.G. Komova, V.B. Loschenov. Photon. Lasers Med., 2 (2), 117 (2013). DOI: 10.1515/plm-2013-0013
  45. A. Kobayashi. Absolute Measurements of Photoluminescence Quantum Yields of Organic Compounds Using an Integrating Sphere. PhD thesis (Gunma University, Japan, 2010). URL: https://core.ac.uk/download/pdf/141874874.pdf
  46. J.C. Boyer, F.C.J.M. Veggel. Nanoscale, 2 (8), 1417 (2010). DOI: 10.1039/C0NR00253D
  47. H. Field. In: Conf. Record of the 26rd IEEE Photovoltaic Specialists Conf. (IEEE, 1997), p. 471. DOI: 10.1109/pvsc.1997.654130
  48. L.P. Boivin, W. Budde, C.X. Dodd, S.R. Das. Appl. Opt., 25 (16), 2715 (1986). DOI: 10.1364/ao.25.002715
  49. A.M. Prokhorov, V.V. Osiko. Problems of Modern Crystallography, ed. by B.K. Weinstein, A.A. Chernov, Kh.S. Bagdasarov, M.V. Classen-Nekludova, E.V. Tsinserling, L.A. Shuvalov, V.A. Yurin, V.A. Lyakhovitskaya (Nauka, Moscow, 1975), p. 280 - 301
  50. F. Auzel. Chem. Rev., 104, 139 (2004). DOI: 10.1021/cr020357g

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru